Modern materials science requires efficient processing and characterization techniques for low dimensional systems. Raman and photoluminescence spectroscopy are important nondestructive tools which provide much information about such systems. Commercial Raman spectrometers are expensive. We discuss a less expensive apparatus with assembled collection optics. Studies of Ge nanoparticles, porous silicon (nanowire), carbon nanotubes, and two-dimensional InGaAs quantum layers demonstrate that this apparatus is useful for teaching and research on nanomaterials.
REFERENCES
1.
M.
Han
, X.
Gao
, J. Z.
Su
, and S.
Nie
, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules
,” Nat. Biotechnol.
19
, 631
–635
(2001
).2.
P. G.
Collins
, M. S.
Arnold
, and P.
Avouris
, “Engineering carbon nanotubes and nanotube circuits using electrical breakdown
,” Science
292
, 706
–708
(2001
).3.
S.
Ghosh
, A. K.
Sood
, and N.
Kumar
, “Carbon nanotube flow sensors
,” Science
299
, 1042
–1044
(2003
).4.
K. D.
Hirschman
, L.
Tsybeskov
, S. P.
Duttagupta
, and P. M.
Fauchet
, “Silicon-based visible light-emitting devices integrated into microelectronic circuits
,” Nature (London)
384
, 338
–341
(1996
).5.
M.
Ouyang
, J. L.
Huang
, C. L.
Cheung
, and C. M.
Lieber
, “Atomically resolved single-walled carbon nanotube intramolecular junctions
,” Science
291
, 97
–100
(2001
).6.
H.
Ahmed
and K.
Nakazato
, “Single-electron devices
,” Microelectron. Eng.
32
(1–4), 297
–315
(1996
).7.
C. E.
Grethlein
, editor, “A look inside nanotechnology,” special issue
, AMPTIAC Q. Newsletter
6
(1
), 5
-65
(2002
).8.
C.
Chen
, M.
Khobaib
, and D.
Curliss
, “Epoxy layered-silicate nanocomposites
,” Prog. Org. Coat.
47
, 376
–383
(2003
).9.
A.
Smekal
, “Zur Quantentheorie der Dispersion
,” Naturwissenschaften
11
, 873
–875
(1923
).10.
C. V.
Raman
and K. S.
Krishnan
, “A new type of secondary radiation
,” Nature (London)
121
, 501
–502
(1928
).11.
Lord
Rayleigh
and J. W.
Strutt
, “On the transmission of light through an atmosphere containing small particles in suspension and on the origin of blue sky
,” Philos. Mag. Ser. 5
47
, 375
–384
(1899
).12.
W. Hayes and R. Loudon, Scattering of Light by Crystals (Wiley, New York, 1978).
13.
M. Cardona and G. Güntherodt, Light Scattering in Solids II. Basic Concepts and Instrumentation (Springer-Verlag, Berlin, 1982).
14.
R.
Loudon
, “Raman effect in crystals
,” Adv. Phys.
13
, 423
–482
(1964
).15.
H.
Lamb
, “On the vibrations of an elastic sphere
,” Proc. London Math. Soc.
13
, 189
–212
(1882
).16.
E.
Duval
, A.
Boukenter
, and M.
Champagnon
, “Vibration eigenmodes and size of microcrystallites in glass: Observation by very-low-frequency Raman scattering
,” Phys. Rev. Lett.
56
(19
), 2052
–2055
(1986
);M.
Fujii
, T.
Nagareda
, S.
Hayashi
, and K.
Yamamoto
, “Low-frequency Raman scattering from small silver particles embedded in thin films
,” Phys. Rev. B
44
(12
), 6243
–6248
(1991
).17.
A.
Roy
and A. K.
Sood
, “Growth of nanoparticles in glass matrix by isochronl thermal annealing: Confined acoustic phonons and optical absorption studies
,” Solid State Commun.
97
(2
), 97
–102
(1996
).18.
C.
Colvard
, T. A.
Gant
, M. V.
Klein
, R.
Merlin
, R.
Fischer
, H.
Morkoc
, and A. C.
Gossard
, “Folded acoustic and quantized optic phonons in (GaAl)As superlattices
,” Phys. Rev. B
31
(4
), 2080
–2091
(1985
).19.
S. M.
Rytov
, “Acoustical properties of a thinly laminated medium
,” Sov. Phys. Acoust.
2
, 68
–80
(1956
).20.
See
A. K.
Sood
, “Phonons in semiconductor superlattices
,” Def. Sci. J.
39
(4
), 411
–423
(1989
) and references therein.21.
A.
Singha
, P.
Dhar
, and Anushree
Roy
, “A nondestructive analytic tool for nanostructured materials: Raman and photoluminescence spectroscopy,” arxiv:
cond-mat/0406096.22.
R.
Fuchs
and K. L.
Kliewer
, “Optical modes of vibrations in an ionic crystal sphere
,” J. Opt. Soc. Am.
58
(3
), 319
–330
(1968
).23.
A.
Roy
and A. K.
Sood
, “Surface and confined optical phonons in nanoparticles in a glass matrix
,” Phys. Rev. B
53
(18
), 12127
–12132
(1996
).24.
T. Ruf, Phonon Raman-Scattering in Semiconductors, Quantum Wells and Superlattices: Basic Results and Applications (Springer-Verlag, New York, 1998).
25.
C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, New York, 2002), p. 289.
26.
D. S.
Jiang
, X. P.
Li
, B. Q.
Sun
, and H. X.
Han
, “A Raman scattering study of GaAs: As films lifted off GaAs substrate
,” J. Phys. D
32
(6
), 629
–631
(1999
).27.
A.
Roy
, K.
Jayaram
, and A. K.
Sood
, “Raman and photoluminescence studies of thermally annealed porous silicon
,” Solid State Commun.
89
(3
), 229
–233
(1994
).28.
F.
Cerdeira
, C. J.
Buchenauer
, F. H.
Pollak
, and M.
Cardona
, “Stress-induced shifts of first-order Raman frequencies of diamond- and zinc-blende-type semiconductors
,” Phys. Rev. B
5
(2
), 580
–593
(1972
).29.
E.
Liarokapis
, D.
Papadimitriou
, J.
Rumberg
, and W.
Richter
, “Raman and RAS measurements on uniaxially strained thin semiconductor layers
,” Phys. Status Solidi B
211
, 309
–316
(1999
).30.
J.
Karpinski
, J.
Jun
, and S.
Porowski
, “Equilibrium pressure of over GaN and high pressure solution growth of GaN
” J. Cryst. Growth
66
, 1
–10
(1984
);H. W.
Kunert
, “Raman selection rules in hexagonal crystals:allowed combination and overtone of vibrational modes in wurtzite GaN
,” Cryst. Res. Technol.
38
(35
), 366
–373
(2003
).31.
F.
Decremps
, J.
Pllicer-Porres
, A. Marco
Saitta
, J. C.
Chervin
, and A.
Polian
, “High-pressure Raman spectroscopy study of wurtzite ZnO
,” Phys. Rev. B
65
, 092101
-1
(2002
).32.
N.
Chandrabhas
and A. K.
Sood
, “Raman study of pressure-induced phase transitions in
” Phys. Rev. B
51
(14
), 8795
–8800
(1995
).33.
P.
Moriarty
, “Nanostructured materials
,” Rep. Prog. Phys.
64
(3
), 297
–381
(2001
) and references therein.34.
S.
Okamoto
and Y.
Kanemitsu
, “Photoluminescence properties of surface-oxidized Ge nanocrystals: Surface localization of excitons
,” Phys. Rev. B
54
(23
), 16421
–16424
(1996
).35.
A. K.
Sood
, K.
Jayaram
, and D. V. S.
Muthu
, “Raman and high pressure photoluminescence studies on porous silicon
,” J. Appl. Phys.
72
, 4963
–4965
(1992
).36.
T. S
Kim
, S. D.
Lester
, and B. G.
Streetman
, “Photoluminescence study of heat-treted InP
,” J. Appl. Phys.
61
(9
), 4598
–4602
(1967
).37.
S. D.
Lester
, T. S.
Kim
, and B. G.
Streetman
, “Factors Influencing the photoluminescence Intensity of InP
,” J. Electrochem. Soc.
133
(10
), 2208
–2209
(1986
).38.
T. S.
Kim
, S. D.
Lester
, and B. G
Streetman
, “Observation of radiative surface states on InP
,” J. Appl. Phys.
61
(5
), 2072
–2074
(1987
).39.
H. B. Bebb and E. W. Williams, Semiconductors and Semimetals, edited by R. K. Williamsons and A. C. Beer (Elsevier, Amsterdam, 1975), Vol. 8, p. 181.
40.
The air cooled argon ion laser is from Spectra Physics, model #177-G12.
41.
R.
Voor
, L.
Chow
, and A.
Schulte
, “MicroRaman spectroscopy in the undergraduate research laboratory
,” Am. J. Phys.
62
(5
), 429
–433
(1994
).42.
Spectramax is a trademark of Instrument SA for Windows. The software can save single or multiple spectra in a single file and can fit the Raman peaks by nonlinear curve fitting.
43.
H. Bliz and W. Kress, Phonon Dispersion Relations in Insulators (Springer-Verlag, New York, 1979), p. 97.
44.
A. I.
Ekimov
and A. A.
Onushchenko
, “Quantum size effect in the optical spectra of semiconductor microcrystals
,” Sov. Phys. Semicond.
16
(7
), 775
–778
(1982
);A. I.
Ekimov
, Al. L.
Efros
, and A. A.
Onushchenko
, “Quantum size effect in semiconductor microcrystals
,” Solid State Commun.
56
(11
), 921
–924
(1985
).45.
L.
Brus
, “Zero-dimensional ‘excitons’ in semiconductor clusters
,” IEEE J. Quantum Electron.
22
(9
), 1909
–1914
(1986
).46.
Y.
Maeda
, N.
Tsukamoto
, Y.
Yazawa
, Y.
Kanemitsu
, and Y.
Masumoto
, “Visible photoluminescence of Ge microcrystals embedded in glassy matrices
,” Appl. Phys. Lett.
59
(24
), 3168
–3170
(1991
).47.
T.
Shimizu-Iwayama
, M.
Oshima
, T.
Niimi
, S.
Nakao
, K.
Saitoh
, T.
Fujita
, and N.
Itoh
, “Visible photoluminescence related to Si precipitates in implanted
” J. Phys.: Condens. Matter
5
, L375
–L380
(1993
).48.
J.
von Borany
, R.
Grötzschel
, K. H.
Heinig
, A.
Markwitz
, B.
Schmidt
, W.
Skorupa
, and H.-J.
Thees
, “The formation of narrow nanocluster bands in Ge-implanted -layers
,” Solid State Elect.
43
, 1159
–1163
(1999
).49.
M.
Yamamoto
, T.
Koshikawa
, T.
Yasue
, H.
Harima
, and K.
Kajiyama
, “Formation of size controlled Ge nanocrystals in matrix by ion implantation and annealing
,” Thin Solid Films
369
, 100
–103
(2000
).50.
H. B.
Kim
, K. H.
Chae
, C. N.
Whang
, J. Y.
Jeong
, M. S.
Oh
, S.
Im
, and J. H.
Song
, “The origin of photoluminescence in Ge-implanted layers
,” J. Lumin.
80
, 281
–284
(1999
);K. S.
Min
, K. V.
Shcheglov
, C. M.
Yang
, and H. A.
Atwater
, “The role of quantum-confined excitons vs defects in the visible luminescence of films containing Ge nanocrystals
,” Appl. Phys. Lett.
68
(18
), 2511
–2513
(1996
).51.
I. H.
Campbell
and P. M.
Fauchet
, “The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors
,” Solid State Commun.
58
(10
), 739
–741
(1986
).52.
For detail discussion on phonon confinement and phonon confinement function see Ref. 52.
53.
S.
Iijima
, “Helical microtubules of graphitic carbon
,” Nature (London)
354
, 56
–58
(1991
).54.
W.
Krätschmer
, L. D.
Lamb
, P.
Fostiropoulos
, and D. R.
Huffman
, “Solid A new form of carbon
,” Nature (London)
347
, 354
–358
(1990
).55.
S. D. M.
Brown
, A.
Jorio
, P.
Corio
, M. S.
Dresselhaus
, R.
Saito
, and K.
Kneipp
, “Origin of Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes
,” Phys. Rev. B
63
, 155414
-1
(2001
).56.
M. V. Klein, Light Scattering in Solids, edited by M. Cardona (Springer-Verlag, Berlin, 1983), pp. 169–172.
57.
A.
Jorio
, M. A.
Pimenta
, A. G. Souza
Filho
, R.
Saito
, G.
Dresselhaus
, and M. S.
Dresselhaus
, “Characterizing carbon nanotube samples with resonance Raman scattering
,” New J. Phys.
5
, 139
.1
(2003
).58.
L. T.
Canham
, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers
,” Appl. Phys. Lett.
57
, 1046
–1048
(1990
).59.
S. F.
Chuang
, S. D.
Collins
, and R. L.
Smith
, “Porous silicon microstructure as studied by transmission electron microscopy
,” Appl. Phys. Lett.
55
, 1540
(1989
);A.
Roy
and A. K.
Sood
, “Fracton dimension of porous silicon as determined by low-frequency Raman scattering
,” Solid State Commun.
93
(12
), 995
–998
(1995
).60.
S. M.
Prokes
, W. E.
Carlos
, and V. M.
Bermudez
, “Luminescence cycling and defect density measurements in porous silicon: Evidence of hydride based model
,” Appl. Phys. Lett.
61
, 1447
–1448
(1992
).61.
M.
Oishi
, M.
Yamamoto
, and K.
Kasaya
, “2.0-μm single-mode operation of InGaAs-InGaAsP distributed-feedback buried-heterostructure quantum-well lasers
,” IEEE Photonics Technol. Lett.
9
(4
), 431
–433
(1997
).62.
M.
Ochiai
, H.
Temkin
, S.
Forouhar
, and R. A
Logan
, “InGaAs-InGaAsP buried heterostructure lasers operating at 2.0 μm
,” IEEE Photonics Technol. Lett.
7
(8
), 825
–827
(1995
).63.
E.
Anastassakis
, A.
Pinczuk
, E.
Burstein
, F. H.
Pollak
, and M.
Cardona
, “Effect of static uniaxial stress on the Raman spectrum of silicon
,” Solid State Commun.
8
, 133
–138
(1970
).64.
T.
Yagi
, Y.
Fujiwara
, T.
Nishino
, and Y.
Hamakawa
, “Photoluminescence and lattice mismatch in InGaAs/InP
,” Jpn. J. Appl. Phys., Part 2
22
(7
), L467
–L469
(1983
).65.
P. C.
Lee
and D.
Meisel
, “Absorption and surface-enhanced Raman of dyes on silver and gold sols
,” J. Phys. Chem.
86
, 3391
–3395
(1982
).66.
K.
Kneipp
, Y.
Wang
, H.
Kneipp
, L. T.
Perelman
, and I.
Itzkan
, “Single molecule detection using surface-enhanced Raman scattering (SERS)
,” Phys. Rev. Lett.
78
(9
), 1667
–1669
(1997
).
This content is only available via PDF.
© 2005 American Association of Physics Teachers.
2005
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.