Modern materials science requires efficient processing and characterization techniques for low dimensional systems. Raman and photoluminescence spectroscopy are important nondestructive tools which provide much information about such systems. Commercial Raman spectrometers are expensive. We discuss a less expensive apparatus with assembled collection optics. Studies of Ge nanoparticles, porous silicon (nanowire), carbon nanotubes, and two-dimensional InGaAs quantum layers demonstrate that this apparatus is useful for teaching and research on nanomaterials.

1.
M.
Han
,
X.
Gao
,
J. Z.
Su
, and
S.
Nie
, “
Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules
,”
Nat. Biotechnol.
19
,
631
635
(
2001
).
2.
P. G.
Collins
,
M. S.
Arnold
, and
P.
Avouris
, “
Engineering carbon nanotubes and nanotube circuits using electrical breakdown
,”
Science
292
,
706
708
(
2001
).
3.
S.
Ghosh
,
A. K.
Sood
, and
N.
Kumar
, “
Carbon nanotube flow sensors
,”
Science
299
,
1042
1044
(
2003
).
4.
K. D.
Hirschman
,
L.
Tsybeskov
,
S. P.
Duttagupta
, and
P. M.
Fauchet
, “
Silicon-based visible light-emitting devices integrated into microelectronic circuits
,”
Nature (London)
384
,
338
341
(
1996
).
5.
M.
Ouyang
,
J. L.
Huang
,
C. L.
Cheung
, and
C. M.
Lieber
, “
Atomically resolved single-walled carbon nanotube intramolecular junctions
,”
Science
291
,
97
100
(
2001
).
6.
H.
Ahmed
and
K.
Nakazato
, “
Single-electron devices
,”
Microelectron. Eng.
32
(1–4),
297
315
(
1996
).
7.
C. E.
Grethlein
, editor, “
A look inside nanotechnology,” special issue
,
AMPTIAC Q. Newsletter
6
(
1
),
5
-
65
(
2002
).
8.
C.
Chen
,
M.
Khobaib
, and
D.
Curliss
, “
Epoxy layered-silicate nanocomposites
,”
Prog. Org. Coat.
47
,
376
383
(
2003
).
9.
A.
Smekal
, “
Zur Quantentheorie der Dispersion
,”
Naturwissenschaften
11
,
873
875
(
1923
).
10.
C. V.
Raman
and
K. S.
Krishnan
, “
A new type of secondary radiation
,”
Nature (London)
121
,
501
502
(
1928
).
11.
Lord
Rayleigh
and
J. W.
Strutt
, “
On the transmission of light through an atmosphere containing small particles in suspension and on the origin of blue sky
,”
Philos. Mag. Ser. 5
47
,
375
384
(
1899
).
12.
W. Hayes and R. Loudon, Scattering of Light by Crystals (Wiley, New York, 1978).
13.
M. Cardona and G. Güntherodt, Light Scattering in Solids II. Basic Concepts and Instrumentation (Springer-Verlag, Berlin, 1982).
14.
R.
Loudon
, “
Raman effect in crystals
,”
Adv. Phys.
13
,
423
482
(
1964
).
15.
H.
Lamb
, “
On the vibrations of an elastic sphere
,”
Proc. London Math. Soc.
13
,
189
212
(
1882
).
16.
E.
Duval
,
A.
Boukenter
, and
M.
Champagnon
, “
Vibration eigenmodes and size of microcrystallites in glass: Observation by very-low-frequency Raman scattering
,”
Phys. Rev. Lett.
56
(
19
),
2052
2055
(
1986
);
M.
Fujii
,
T.
Nagareda
,
S.
Hayashi
, and
K.
Yamamoto
, “
Low-frequency Raman scattering from small silver particles embedded in SiO2 thin films
,”
Phys. Rev. B
44
(
12
),
6243
6248
(
1991
).
17.
A.
Roy
and
A. K.
Sood
, “
Growth of CdSxSe1−x nanoparticles in glass matrix by isochronl thermal annealing: Confined acoustic phonons and optical absorption studies
,”
Solid State Commun.
97
(
2
),
97
102
(
1996
).
18.
C.
Colvard
,
T. A.
Gant
,
M. V.
Klein
,
R.
Merlin
,
R.
Fischer
,
H.
Morkoc
, and
A. C.
Gossard
, “
Folded acoustic and quantized optic phonons in (GaAl)As superlattices
,”
Phys. Rev. B
31
(
4
),
2080
2091
(
1985
).
19.
S. M.
Rytov
, “
Acoustical properties of a thinly laminated medium
,”
Sov. Phys. Acoust.
2
,
68
80
(
1956
).
20.
See
A. K.
Sood
, “
Phonons in semiconductor superlattices
,”
Def. Sci. J.
39
(
4
),
411
423
(
1989
) and references therein.
21.
A.
Singha
,
P.
Dhar
, and
Anushree
Roy
, “
A nondestructive analytic tool for nanostructured materials: Raman and photoluminescence spectroscopy,” arxiv:
cond-mat/0406096.
22.
R.
Fuchs
and
K. L.
Kliewer
, “
Optical modes of vibrations in an ionic crystal sphere
,”
J. Opt. Soc. Am.
58
(
3
),
319
330
(
1968
).
23.
A.
Roy
and
A. K.
Sood
, “
Surface and confined optical phonons in CdSxSe1−x nanoparticles in a glass matrix
,”
Phys. Rev. B
53
(
18
),
12127
12132
(
1996
).
24.
T. Ruf, Phonon Raman-Scattering in Semiconductors, Quantum Wells and Superlattices: Basic Results and Applications (Springer-Verlag, New York, 1998).
25.
C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, New York, 2002), p. 289.
26.
D. S.
Jiang
,
X. P.
Li
,
B. Q.
Sun
, and
H. X.
Han
, “
A Raman scattering study of GaAs: As films lifted off GaAs substrate
,”
J. Phys. D
32
(
6
),
629
631
(
1999
).
27.
A.
Roy
,
K.
Jayaram
, and
A. K.
Sood
, “
Raman and photoluminescence studies of thermally annealed porous silicon
,”
Solid State Commun.
89
(
3
),
229
233
(
1994
).
28.
F.
Cerdeira
,
C. J.
Buchenauer
,
F. H.
Pollak
, and
M.
Cardona
, “
Stress-induced shifts of first-order Raman frequencies of diamond- and zinc-blende-type semiconductors
,”
Phys. Rev. B
5
(
2
),
580
593
(
1972
).
29.
E.
Liarokapis
,
D.
Papadimitriou
,
J.
Rumberg
, and
W.
Richter
, “
Raman and RAS measurements on uniaxially strained thin semiconductor layers
,”
Phys. Status Solidi B
211
,
309
316
(
1999
).
30.
J.
Karpinski
,
J.
Jun
, and
S.
Porowski
, “
Equilibrium pressure of N2 over GaN and high pressure solution growth of GaN
J. Cryst. Growth
66
,
1
10
(
1984
);
H. W.
Kunert
, “
Raman selection rules in C6v4 hexagonal crystals:allowed combination and overtone of vibrational modes in wurtzite GaN
,”
Cryst. Res. Technol.
38
(
35
),
366
373
(
2003
).
31.
F.
Decremps
,
J.
Pllicer-Porres
,
A. Marco
Saitta
,
J. C.
Chervin
, and
A.
Polian
, “
High-pressure Raman spectroscopy study of wurtzite ZnO
,”
Phys. Rev. B
65
,
092101
-
1
(
2002
).
32.
N.
Chandrabhas
and
A. K.
Sood
, “
Raman study of pressure-induced phase transitions in RbIO4,
Phys. Rev. B
51
(
14
),
8795
8800
(
1995
).
33.
P.
Moriarty
, “
Nanostructured materials
,”
Rep. Prog. Phys.
64
(
3
),
297
381
(
2001
) and references therein.
34.
S.
Okamoto
and
Y.
Kanemitsu
, “
Photoluminescence properties of surface-oxidized Ge nanocrystals: Surface localization of excitons
,”
Phys. Rev. B
54
(
23
),
16421
16424
(
1996
).
35.
A. K.
Sood
,
K.
Jayaram
, and
D. V. S.
Muthu
, “
Raman and high pressure photoluminescence studies on porous silicon
,”
J. Appl. Phys.
72
,
4963
4965
(
1992
).
36.
T. S
Kim
,
S. D.
Lester
, and
B. G.
Streetman
, “
Photoluminescence study of heat-treted InP
,”
J. Appl. Phys.
61
(
9
),
4598
4602
(
1967
).
37.
S. D.
Lester
,
T. S.
Kim
, and
B. G.
Streetman
, “
Factors Influencing the photoluminescence Intensity of InP
,”
J. Electrochem. Soc.
133
(
10
),
2208
2209
(
1986
).
38.
T. S.
Kim
,
S. D.
Lester
, and
B. G
Streetman
, “
Observation of radiative surface states on InP
,”
J. Appl. Phys.
61
(
5
),
2072
2074
(
1987
).
39.
H. B. Bebb and E. W. Williams, Semiconductors and Semimetals, edited by R. K. Williamsons and A. C. Beer (Elsevier, Amsterdam, 1975), Vol. 8, p. 181.
40.
The air cooled argon ion laser is from Spectra Physics, model #177-G12.
41.
R.
Voor
,
L.
Chow
, and
A.
Schulte
, “
MicroRaman spectroscopy in the undergraduate research laboratory
,”
Am. J. Phys.
62
(
5
),
429
433
(
1994
).
42.
Spectramax is a trademark of Instrument SA for Windows. The software can save single or multiple spectra in a single file and can fit the Raman peaks by nonlinear curve fitting.
43.
H. Bliz and W. Kress, Phonon Dispersion Relations in Insulators (Springer-Verlag, New York, 1979), p. 97.
44.
A. I.
Ekimov
and
A. A.
Onushchenko
, “
Quantum size effect in the optical spectra of semiconductor microcrystals
,”
Sov. Phys. Semicond.
16
(
7
),
775
778
(
1982
);
A. I.
Ekimov
,
Al. L.
Efros
, and
A. A.
Onushchenko
, “
Quantum size effect in semiconductor microcrystals
,”
Solid State Commun.
56
(
11
),
921
924
(
1985
).
45.
L.
Brus
, “
Zero-dimensional ‘excitons’ in semiconductor clusters
,”
IEEE J. Quantum Electron.
22
(
9
),
1909
1914
(
1986
).
46.
Y.
Maeda
,
N.
Tsukamoto
,
Y.
Yazawa
,
Y.
Kanemitsu
, and
Y.
Masumoto
, “
Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices
,”
Appl. Phys. Lett.
59
(
24
),
3168
3170
(
1991
).
47.
T.
Shimizu-Iwayama
,
M.
Oshima
,
T.
Niimi
,
S.
Nakao
,
K.
Saitoh
,
T.
Fujita
, and
N.
Itoh
, “
Visible photoluminescence related to Si precipitates in Si+ implanted SiO2,
J. Phys.: Condens. Matter
5
,
L375
L380
(
1993
).
48.
J.
von Borany
,
R.
Grötzschel
,
K. H.
Heinig
,
A.
Markwitz
,
B.
Schmidt
,
W.
Skorupa
, and
H.-J.
Thees
, “
The formation of narrow nanocluster bands in Ge-implanted SiO2-layers
,”
Solid State Elect.
43
,
1159
1163
(
1999
).
49.
M.
Yamamoto
,
T.
Koshikawa
,
T.
Yasue
,
H.
Harima
, and
K.
Kajiyama
, “
Formation of size controlled Ge nanocrystals in SiO2 matrix by ion implantation and annealing
,”
Thin Solid Films
369
,
100
103
(
2000
).
50.
H. B.
Kim
,
K. H.
Chae
,
C. N.
Whang
,
J. Y.
Jeong
,
M. S.
Oh
,
S.
Im
, and
J. H.
Song
, “
The origin of photoluminescence in Ge-implanted SiO2 layers
,”
J. Lumin.
80
,
281
284
(
1999
);
K. S.
Min
,
K. V.
Shcheglov
,
C. M.
Yang
, and
H. A.
Atwater
, “
The role of quantum-confined excitons vs defects in the visible luminescence of SiO2 films containing Ge nanocrystals
,”
Appl. Phys. Lett.
68
(
18
),
2511
2513
(
1996
).
51.
I. H.
Campbell
and
P. M.
Fauchet
, “
The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors
,”
Solid State Commun.
58
(
10
),
739
741
(
1986
).
52.
For detail discussion on phonon confinement and phonon confinement function see Ref. 52.
53.
S.
Iijima
, “
Helical microtubules of graphitic carbon
,”
Nature (London)
354
,
56
58
(
1991
).
54.
W.
Krätschmer
,
L. D.
Lamb
,
P.
Fostiropoulos
, and
D. R.
Huffman
, “
Solid C60: A new form of carbon
,”
Nature (London)
347
,
354
358
(
1990
).
55.
S. D. M.
Brown
,
A.
Jorio
,
P.
Corio
,
M. S.
Dresselhaus
,
R.
Saito
, and
K.
Kneipp
, “
Origin of Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes
,”
Phys. Rev. B
63
,
155414
-
1
(
2001
).
56.
M. V. Klein, Light Scattering in Solids, edited by M. Cardona (Springer-Verlag, Berlin, 1983), pp. 169–172.
57.
A.
Jorio
,
M. A.
Pimenta
,
A. G. Souza
Filho
,
R.
Saito
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
, “
Characterizing carbon nanotube samples with resonance Raman scattering
,”
New J. Phys.
5
,
139
.
1
(
2003
).
58.
L. T.
Canham
, “
Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers
,”
Appl. Phys. Lett.
57
,
1046
1048
(
1990
).
59.
S. F.
Chuang
,
S. D.
Collins
, and
R. L.
Smith
, “
Porous silicon microstructure as studied by transmission electron microscopy
,”
Appl. Phys. Lett.
55
,
1540
(
1989
);
A.
Roy
and
A. K.
Sood
, “
Fracton dimension of porous silicon as determined by low-frequency Raman scattering
,”
Solid State Commun.
93
(
12
),
995
998
(
1995
).
60.
S. M.
Prokes
,
W. E.
Carlos
, and
V. M.
Bermudez
, “
Luminescence cycling and defect density measurements in porous silicon: Evidence of hydride based model
,”
Appl. Phys. Lett.
61
,
1447
1448
(
1992
).
61.
M.
Oishi
,
M.
Yamamoto
, and
K.
Kasaya
, “
2.0-μm single-mode operation of InGaAs-InGaAsP distributed-feedback buried-heterostructure quantum-well lasers
,”
IEEE Photonics Technol. Lett.
9
(
4
),
431
433
(
1997
).
62.
M.
Ochiai
,
H.
Temkin
,
S.
Forouhar
, and
R. A
Logan
, “
InGaAs-InGaAsP buried heterostructure lasers operating at 2.0 μm
,”
IEEE Photonics Technol. Lett.
7
(
8
),
825
827
(
1995
).
63.
E.
Anastassakis
,
A.
Pinczuk
,
E.
Burstein
,
F. H.
Pollak
, and
M.
Cardona
, “
Effect of static uniaxial stress on the Raman spectrum of silicon
,”
Solid State Commun.
8
,
133
138
(
1970
).
64.
T.
Yagi
,
Y.
Fujiwara
,
T.
Nishino
, and
Y.
Hamakawa
, “
Photoluminescence and lattice mismatch in InGaAs/InP
,”
Jpn. J. Appl. Phys., Part 2
22
(
7
),
L467
L469
(
1983
).
65.
P. C.
Lee
and
D.
Meisel
, “
Absorption and surface-enhanced Raman of dyes on silver and gold sols
,”
J. Phys. Chem.
86
,
3391
3395
(
1982
).
66.
K.
Kneipp
,
Y.
Wang
,
H.
Kneipp
,
L. T.
Perelman
, and
I.
Itzkan
, “
Single molecule detection using surface-enhanced Raman scattering (SERS)
,”
Phys. Rev. Lett.
78
(
9
),
1667
1669
(
1997
).
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.