We give a closed expression for the Minkowski (1+1)-dimensional metric in the radar coordinates of an arbitrary non-inertial observer O in terms of O’s proper acceleration. Knowledge of the metric allows the non-inertial observer to perform experiments in spacetime without making reference to inertial frames. To clarify the relation between inertial and non-inertial observers the coordinate transformation between radar and inertial coordinates also is given. We show that every conformally flat coordinate system can be regarded as the radar coordinate system of a suitable observer for a suitable parametrization of the observer worldline. Therefore, the coordinate transformation between arbitrarily moving observers is a conformal transformation and conformally invariant (1+1)-dimensional theories lead to the same physics for all observers, independently of their relative motion.

1.
C. E.
Dolby
and
S. F.
Gull
, “
On radar time and the twin ‘paradox’
,”
Am. J. Phys.
69
,
1257
1261
(
2001
).
2.
L. D.
Landau
and
E. M.
Lifshitz
,
The Classical Theory of Fields
(
Addison-Wesley
, Reading, MA,
1962
).
3.
R. F.
Märzke
and
J. A.
Wheeler
, “
Gravitation as geometry: The geometry of space-time and the geometrodynamical standard meter
,” in
Gravitation and Relativity
, edited by
H.-Y.
Chiu
and
W. F.
Hoffmann
(
Benjamin
, New York,
1964
), p.
40
.
4.
M.
Pauri
and
M.
Vallisneri
, “
Märzke-Wheeler coordinates for accelerated observers in special relativity
,”
Found. Phys. Lett.
13
,
401
425
(
2000
).
5.
E.
Fermi
, “
Sopra i fenomeni che avvengono in vicinanza di una linea oraria” (“On the phenomena occurring near a worldline”)
,
Rend. Accad. Lincei
31
,
21
23
(
1922
);
E.
Fermi
, “
Sopra i fenomeni che avvengono in vicinanza di una linea oraria” (“On the phenomena occurring near a worldline”)
,
Rend. Accad. Lincei
31
,
51
52
(
1922
);
E.
Fermi
, “
Sopra i fenomeni che avvengono in vicinanza di una linea oraria” (“On the phenomena occurring near a worldline”)
,
Rend. Accad. Lincei
31
,
101
103
(
1922
).
6.
K. P.
Marzlin
, “
Fermi coordinates for weak gravitational fields
,”
Phys. Rev. D
50
,
888
891
(
1994
).
7.
C. W.
Misner
,
K. S.
Thorne
, and
J. A.
Wheeler
,
Gravitation
(
Freeman
, San Francisco,
1973
).
8.
A. I.
Nesterov
, “
Riemann normal coordinates, Fermi reference system and the geodesic deviation equation
,”
Class. Quantum Grav.
16
,
465
467
(
1999
).
9.
R. W.
Brehme
, “
A geometric representation of Galilean and Lorentz transformations
,”
Am. J. Phys.
30
,
489
496
(
1962
).
10.
F. W.
Sears
and
R.
Brehme
,
Introduction to the Theory of Relativity
(
Addison-Wesley
, Reading, MA,
1968
).
11.

An extended frame is defined by a congruence of timelike curves, while an observer in 1+1 Minkowski spacetime is defined by a worldline.

12.
S.
Manoff
, “
Frames of reference in spaces with affine connections and metrics
,”
Class. Quantum Grav.
18
,
1111
1125
(
2001
).
13.
E.
Minguzzi
, “
Simultaneity and generalized connections in general relativity
,”
Class. Quantum Grav.
20
,
2443
2456
(
2003
).
14.
L.
Bel
and
J.
Llosa
, “
Spatially affine motions in relativity
,”
Class. Quantum Grav.
12
,
1949
1967
(
1995
).
15.
J. E.
Romain
, “
Time measurements in accelerated frames of reference
,”
Rev. Mod. Phys.
35
,
376
389
(
1963
).
16.
J. E.
Romain
, “
Rigidity criteria for one-dimensional translations
,”
Nuovo Cimento
31
,
1060
1069
(
1964
).
17.
N.
Rosen
, “
Notes on rotation and rigid bodies in relativity theory
,”
Phys. Rev.
71
,
54
58
(
1947
).
18.
D. G.
Ashworth
and
R. C.
Jennison
, “
Surveying in rotating systems
,”
J. Phys. A
9
,
35
43
(
1976
).
19.
P. A.
Davies
, “
Measurements in rotating systems
,”
J. Phys. A
9
,
951
960
(
1976
).
20.
H.
Lass
, “
Accelerating frames of reference and the clock paradox
,”
Am. J. Phys.
31
,
274
276
(
1963
).
21.
E. A.
Desloge
and
R. J.
Philpott
, “
Uniformly accelerated reference frames in special relativity
,”
Am. J. Phys.
55
,
252
261
(
1987
).
22.
L. M.
Marsh
, “
Relativistic accelerated systems
,”
Am. J. Phys.
33
,
934
938
(
1965
).
23.
J. E.
Romain
, “
Remarks on a coordinate transformation to an accelerated frame of reference
,”
Am. J. Phys.
32
,
279
285
(
1964
).
24.
D.
Tinbrook
, “
General coordinates of the flat space-time of constant proper-acceleration
,”
Aust. J. Phys.
50
,
851
868
(
1997
).
25.
R. T.
Jones
, “
Conformal coordinates associated with uniformly accelerated motion
,”
Am. J. Phys.
24
,
124
125
(
1961
).
26.
M.
Born
and
W.
Biem
, “
Zum Uhrenparadoxon” (“On the clock paradox”)
,
Proc. K. Ned. Akad. Wet.
61
,
110
120
(
1958
).
27.
J.
Crampin
,
W.
McCrea
,
F.
McNally
, and
D.
McNally
, “
A class of transformations in special relativity
,”
Proc. R. Soc. London, Ser. A
252
,
156
176
(
1959
).
28.
C.
Møller
,
The Theory of Relativity
(
Clarendon Press
, Oxford,
1962
), Sec. 8.15.
29.
R.
Wald
,
General Relativity
(
University of Chicago Press
, Chicago,
1984
).
30.
E. L.
Hill
, “
On accelerated coordinate systems in classical and relativistic mechanics
,”
Phys. Rev.
67
,
358
363
(
1945
).
31.
E. L.
Hill
, “
On the kinematics of uniformly accelerated motions and classical electromagnetic theory
,”
Phys. Rev.
72
,
143
149
(
1947
).
32.
T.
Fulton
,
F.
Rohrlich
, and
L.
Witten
, “
Conformal invariance in physics
,”
Rev. Mod. Phys.
34
,
442
457
(
1962
).
33.
T.
Fulton
,
F.
Rohrlich
, and
L.
Witten
, “
Physical consequences of a coordinate transformation to a uniformly accelerating frame
,”
Nuovo Cimento
26
,
652
671
(
1962
).
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.