Snell’s law for the path of light between media with different indices of refraction is usually discussed in terms of Maxwell’s electromagnetic wave theory. Snell’s law also may be derived from a photon beam theory of light rays. We show that this particle physics view is much simpler for understanding the laws of refraction.
REFERENCES
1.
2.
J. W.
Shirley
, “An early experimental determination of Snell’s law
,” Am. J. Phys.
19
, 507
–508
(1951
).3.
H.
Helfgott
and M.
Helfgott
, “A noncalculus proof that Fermat’s principle of least time implies the law of refraction
,” Am. J. Phys.
70
, 1224
–1225
(2002
).4.
L. D.
Landau
and E. M.
Lifshitz
, Mechanics
(Butterworth-Heinemann
, Oxford, 2004
), 3rd ed., Chap. 2.5.
T.
Sekiguchi
and K.
Wolf
, “The Hamiltonian formulation of optics
,” Am. J. Phys.
55
, 830
–835
(1987
).6.
7.
D. R.
Smith
and N.
Kroll
, “Negative refractive index in left-handed materials
,” Phys. Rev. Lett.
85
, 2933
–2936
(2000
).8.
L. D.
Landau
, E. M.
Lifshitz
, and L. P.
Pitaevskii
, Electrodynamics of Continuous Media
(Butterworth-Heinemann
, Oxford, 2000
), 2nd ed.9.
10.
B. K.
Lubsandorzhiev
, P. G.
Pokhil
, R. V.
Vasiliev
, and Y. E.
Vyatchin
, “Measurements of group velocity of light in the lake Baikal water
,” Nucl. Instrum. Methods Phys. Res. A
502
, 168
–171
(2003
).11.
W. R.
Hamilton
, The Mathematical Papers of William Rowan Hamilton
(Cambridge U.P.
, Cambridge, 1931
).12.
Reference 23, p.
328
.13.
14.
R. K.
Luneburg
, Mathematical Theory of Optics
(University of California Press
, Berkeley, 1964
).15.
16.
17.
W. A.
Newcomb
, “Generalized Fermat principle
,” Am. J. Phys.
51
, 338
–340
(1983
).18.
P.
Volker
, Ray Optics, Fermat’s Principle, and Applications to General Relativity
(Springer-Verlag
, Berlin, 2000
).19.
H. A.
Lorentz
, A.
Einstein
, H.
Minkowski
, and H.
Weyl
, The Principle of Relativity
(Dover
, New York, 1952
), p. 163
.20.
H. A.
Lorentz
, A.
Einstein
, H.
Minkowski
and H.
Weyl
, The Principle of Relativity
(Dover
, New York, 1952
).21.
D. E.
Lebach
et al., “Measurement of the solar gravitational deflection of radio waves using very-long-baseline interferometry
,” Phys. Rev. Lett.
75
, 1439
–1442
(1995
).22.
S. S.
Shapiro
, J. L.
Davis
, D. E.
Lebach
, and J. S.
Gregory
, “Measurement of the solar gravitational deflection of radio waves using very-long-baseline interferometry data, 1979–1999
,” Phys. Rev. Lett.
92
, 121101
–1
(2004
).23.
L. D.
Landau
and E. M.
Lifshitz
, The Classical Theory of Fields
(Butterworth-Heinemann
, Oxford, 2000
), 4th ed.© 2005 American Association of Physics Teachers.
2005
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.