Since Schwarzshild discovered the point-mass solution to Einstein’s equations that bears his name, many equivalent forms of the metric have been obtained. Using an elementary coordinate transformation, we derive the most general form for the stationary, spherically symmetric vacuum metric, which contains one free function. Different choices for the function correspond to common expressions for the line element. From the general metric, we obtain particle and photon trajectories, and use them to specify several time coordinates adapted to physical situations. The most general form of the metric is only slightly more complicated than the Schwarzschild form, which argues for teaching the general line element in place of the diagonal metric.

1.
A.
Refregier
, “
Weak Gravitational Lensing by Large-Scale Structure
,”
Annu. Rev. Astron. Astrophys.
41
,
645
668
(
2003
).
2.
B. C.
Barish
and
R.
Weiss
, “
LIGO and the Detection of Gravitational Waves
,”
Phys. Today
55
,
44
50
(
1999
).
3.
LIGO Scientific Collaboration, “Setting upper limits on the strength of periodic gravitational waves using the first science data from the GEO600 and LIGO detectors,” Report No. LIGO-P030008-E-Z, gr-qc/0308050.
4.
N.
Ashby
, “
Relativity and the Global Positioning System
,”
Phys. Today
55
,
41
47
(
2002
).
5.
G. F. Ellis and R. M. Williams, Flat and Curved Space-times (Oxford U.P., Oxford, 2000).
6.
B. F. Schutz, A First Course in General Relativity (Cambridge U.P., Cambridge, 1985).
7.
J. Foster and J. D. Nightingale, A Short Course in General Relativity (Springer-Verlag, New York, 1994).
8.
J. B. Hartle, Gravity: An Introduction to Einstein’s General Relativity (Addison–Wesley, San Francisco, 2003).
9.
Antoci and Liebscher (Ref. 10) have recently noted that Schwarzschild’s original derivation (Ref. 20) used different coordinates, and the familiar form bearing Schwarzschild’s name is actually due to Hilbert.
10.
S.
Antoci
and
D.-E.
Liebscher
, “
On the Gravitational Field of a Point Mass According to Einstein’s Theory by K. Schwarzschild
,”
Gen. Relativ. Gravit.
35
,
945
950
(
2003
).
11.
S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time (Cambridge U.P., Cambridge, 1973).
12.
C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, New York, 1973).
13.
R.
Gautreau
and
B.
Hoffmann
, “
The Schwarzschild Radial Coordinate as a Measure of Proper Distance
,”
Phys. Rev. D
17
,
2552
2555
(
1978
).
14.
A. S.
Eddington
, “
A comparison of Whitehead’s and Einstein’s formulas
,”
Nature (London)
113
,
192
(
1924
).
15.
K.
Martel
and
E.
Poisson
, “
Regular coordinate systems for Schwarschild and other spherical spacetimes
,”
Am. J. Phys.
69
,
476
480
(
2001
).
16.
A.
Lasenby
,
C.
Doran
, and
S.
Gull
, “
Gravity, Gauge Theories and Geometric Algebra
,”
Philos. Trans. R. Soc. London, Ser. A
356
,
487
582
(
1998
).
17.
K.
Lake
, unpublished, gr-qc/9407005.
18.
R. M. Wald, General Relativity (University of Chicago Press, Chicago, 1984).
19.
S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972).
20.
K.
Schwarzschild
, “
On the Gravitational Field of a Mass Point According to Einstein’s Theory
,”
Gen. Relativ. Gravit.
35
,
951
959
(
2003
),
translated by S. Antoci from Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie, originally published in Sitz. K. Preuss. Akad. Wiss. Berlin, Phys. Math. Kl. 189–196 (1916).
21.
M. R. Francis and A. Kosowsky (2004), Ann. of Phy. (in press), gr-qc/0311007.
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.