We calculate and visualize the Wigner quasi-probability distribution for the position and momentum, PW(n)(x,p), for the energy eigenstates of the infinite square well. We evaluate the time-dependent Wigner distribution, PW(x,p;t), for Gaussian wave packet solutions of this system, and illustrate the short-term semi-classical time dependence and the longer-term revival and fractional revival behavior. Our results indicate how the Wigner distribution can be used to examine the highly correlated dynamical position-momentum structure of quantum states. In particular, this tool provides an excellent way of demonstrating the patterns of highly correlated Schrödinger-cat-like “mini-packets” which appear at fractional multiples of the exact revival time.

1.
J. B. Marion and S. T. Thornton, Classical Dynamics of Particles and Systems (Brooks/Cole, Belmont, CA, 2004), 5th ed.; G. R. Fowles and G. L. Cassiday, Analytical Mechanics (Harcourt Brace, Fort Worth, 1999), 6th ed.; A. P. Arya, Introduction to Classical Mechanics (Prentice–Hall, Upper Saddle River, NJ, 1998), 2nd ed.
2.
F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw–Hill, New York, 1965).
3.
E.
Wigner
, “
On the quantum correction for thermodynamic equilibrium
,”
Phys. Rev.
40
,
749
759
(
1932
).
4.
V. I.
Tatarskiı̌
, “
The Wigner representation of quantum mechanics
,”
Sov. Phys. Usp.
26
,
311
327
(
1983
).
5.
N. L.
Balaczs
and
B. K.
Jennings
, “
Wigner’s function and other distribution functions in mock phase space
,”
Phys. Rep.
105
,
347
391
(
1984
).
6.
P.
Carruthers
and
F.
Zachariasen
, “
Quantum collision theory with phase-space distributions
,”
Rev. Mod. Phys.
55
,
245
285
(
1983
).
7.
M.
Hillery
,
R. F.
O’Connell
,
M. O.
Scully
, and
E. P.
Wigner
, “
Distribution functions in physics: Fundamentals
,”
Phys. Rep.
106
,
121
167
(
1984
).
8.
J.
Bertrand
and
P.
Bertrand
, “
A tomographic approach to Wigner’s function
,”
Found. Phys.
17
,
397
405
(
1987
).
9.
Y. S.
Kim
and
E. P.
Wigner
, “
Canonical transformations in quantum mechanics
,”
Am. J. Phys.
58
,
439
448
(
1990
).
10.
Y. S. Kim and M. E. Noz, “Phase space picture of quantum mechanics: Group theoretical approach,” in Lecture Notes in Physics Series (World Scientific, Singapore, 1990), Vol. 40.
11.
H.-W.
Lee
, “
Theory and application of the quantum phase-space distribution functions
,”
Phys. Rep.
259
,
147
211
(
1995
).
12.
A. M.
Ozorio de Almeida
, “
The Weyl representation in classical and quantum mechanics
,”
Phys. Rep.
296
,
265
342
(
1998
).
13.
R. F.
O’Connell
and
E. P.
Wigner
, “
Quantum mechanical distribution functions: Conditions for uniqueness
,”
Phys. Lett. A
83
,
145
148
(
1981
).
14.
R. F.
O’Connell
and
A. K.
Rajagopal
, “
New interpretation of the scalar product in Hilbert space
,”
Phys. Rev. Lett.
48
,
525
526
(
1982
).
15.
R. F.
O’Connell
and
D. F.
Walls
, “
Operational approach to phase-space measurements in quantum mechanics
,”
Nature (London)
312
,
257
258
(
1984
).
16.
W.
Schleich
,
D. F.
Walls
, and
J. A.
Wheeler
, “
Area of overlap and interference in phase space versus Wigner pseudoprobabilities
,”
Phys. Rev. A
38
,
1177
1186
(
1988
).
17.
J. P.
Dahl
and
M.
Springborg
, “
Wigner’s phase space function and atomic structure I. The hydrogen atom ground state
,”
Mol. Phys.
47
,
1001
1019
(
1982
);
M.
Springborg
and
J. P.
Dahl
, “
Wigner’s phase space and atomic structure II. Ground states for closed-shell atoms
,”
Phys. Rev. A
36
,
1050
1062
(
1987
).
18.
J. P. Dahl, “Dynamical equations for the Wigner functions,” in Energy Storage and Redistribution in Molecules, edited by J. Hinze (Plenum, New York, 1983), pp. 557–572.
19.
M.
Springborg
, “
Wigner’s phase space function and the bond in LiH
,”
Theor. Chim. Act (Berl.)
63
,
349
356
(
1983
).
20.
J. P.
Dahl
and
M.
Springborg
, “
The Morse oscillator in position space, momentum space, and phase space
,”
J. Chem. Phys.
88
,
4535
4537
(
1988
).
21.
M.
Hug
,
C.
Menke
, and
W. P.
Schleich
, “
Modified spectral method in phase space: Calculation of the Wigner function. I. Fundamentals
,”
Phys. Rev. A
57
,
3188
3205
(
1988
);
M.
Hug
,
C.
Menke
, and
W. P.
Schleich
, “
Modified spectral method in phase space: Calculation of the Wigner function. II. Generalizations
,”
Phys. Rev. A
57
,
3188
3205
(
1988
).
22.
J.
Snygg
, “
Wave functions rotated in phase space
,”
Am. J. Phys.
45
,
58
60
(
1977
).
23.
N.
Mukunda
, “
Wigner distribution for angle coordinates in quantum mechanics
,”
Am. J. Phys.
47
,
192
187
(
1979
).
24.
S.
Stenholm
, “
The Wigner function: I. The physical interpretation
,”
Eur. J. Phys.
1
,
244
248
(
1980
).
25.
G.
Mourgues
,
J. C.
Andrieux
, and
M. R.
Feix
, “
Solution of the Schroedinger equation for a system excited by a time Dirac pulse of potential. An example of the connection with the classical limit through a particular smoothing of the Wigner function
,”
Eur. J. Phys.
5
,
112
118
(
1984
).
26.
M.
Casas
,
H.
Krivine
, and
J.
Martorell
, “
On the Wigner transforms of some simple systems and their semiclassical interpretations
,”
Eur. J. Phys.
12
,
105
111
(
1991
).
27.
R. A.
Campos
, “
Correlation coefficient for incompatible observables of the quantum harmonic oscillator
,”
Am. J. Phys.
66
,
712
718
(
1998
).
28.
I. Bialynicki-Birula, M. Cieplak, and J. Kaminski, Theory of Quanta (Oxford U.P., New York, 1992).
29.
L. E. Ballentine, Quantum Mechanics: A Modern Development (World Scientific, Singapore, 1998).
30.
L. Cohen, Time-Frequency Analysis (Prentice–Hall, Englewood Cliffs, NJ, 1995).
31.
M. O. Scully and M. Suhail Zubairy, Quantum Optics (Cambridge U.P., Cambridge, 1997).
32.
W. P. Schleich, Quantum Optics in Phase Space (Wiley-VCH, Berlin, 2001).
33.
W.
Kinzel
, “
Bilder elementarer Quantenmechanik
,”
Phys. Bl.
51
,
1190
1191
(
1995
).
34.
M. V.
Berry
, “
Quantum fractals in boxes
,”
J. Phys. A
29
,
6617
6629
(
1996
).
35.
F.
Großmann
,
J.-M.
Rost
, and
W. P.
Schleich
, “
Spacetime structures in simple quantum systems
,”
J. Phys. A
30
,
L277
L283
(
1997
).
36.
P.
Stifter
,
C.
Leichtle
,
W. P.
Schleich
, and
J.
Marklov
, “
Das Teilchen im Kasten: Strukturen in der Wahrscheinlichkeitsdichte,” translated as “The particle in a box: Structures in the probability density
,”
Z. Naturforsch., A: Phys. Sci.
52
,
377
385
(
1997
).
37.
I.
Marzoli
,
F.
Saif
,
I.
Bialynicki-Birula
,
O. M.
Friesch
,
A. E.
Kaplan
, and
W. P.
Schleich
, “
Quantum carpets made simple
,”
Acta Phys. Slov.
48
,
323
333
(
1998
);
I.
Marzoli
,
F.
Saif
,
I.
Bialynicki-Birula
,
O. M.
Friesch
,
A. E.
Kaplan
, and
W. P.
Schleich
, arXiv:quant-ph/9806033.
38.
A. E.
Kaplan
,
P.
Stifter
,
K. A. H.
van Leeuwen
,
W. E.
Lamb
, Jr.
, and
W. P.
Schleich
, “
Intermode traces—Fundamental interference phenomena in quantum and wave physics
,”
Phys. Scr., T
76
,
93
97
(
1998
).
39.
W.
Loinaz
and
T. J.
Newman
, “
Quantum revivals and carpets in some exactly solvable systems
,”
J. Phys. A
32
,
8889
8895
(
1999
),
W.
Loinaz
and
T. J.
Newman
, arXiv:quant-ph/9902039.
40.
M. J. W.
Hall
,
M. S.
Reineker
, and
W. P.
Schleich
, “
Unravelling quantum carpets: a travelling wave approach
,”
J. Phys. A
32
,
8275
8291
(
1999
);
M. J. W.
Hall
,
M. S.
Reineker
, and
W. P.
Schleich
, arXiv:quant-ph/9906107.
41.
A. E.
Kaplan
,
I.
Marzoli
,
W. E.
Lamb
, Jr.
, and
W. P.
Schleich
, “
Multimode interference: Highly regular pattern formation in quantum wave-packet evolution
,”
Phys. Rev. A
61
,
032101
-
1
032101
-
6
(
2000
).
42.
O. M.
Friesch
,
I.
Marzoli
, and
W. P.
Schleich
, “
Quantum carpets woven by Wigner functions
,”
New J. Phys.
2
,
4
.
1
4
.
11
(
2000
),
〈http://www.iop.org/EJ/journal/JNP〉. Video sequences of time-dependent Wigner function for the infinite well are available at this Web site.
43.
R.
Bluhm
,
V. A.
Kostelecký
, and
J.
Porter
, “
The evolution and revival structure of localized quantum wave packets
,”
Am. J. Phys.
64
,
944
953
(
1996
);
R.
Bluhm
,
V. A.
Kostelecký
, and
J.
Porter
, arXiv:quant-ph/9510029.
44.
R. W.
Robinett
, “
Quantum wave packet revivals
,”
Phys. Rep.
392
,
1
119
(
2004
);
R. W.
Robinett
, arXiv:quant-ph/0401031.
45.
See 〈www.arxiv.org/abs/quant-ph/0312086〉.
46.
See EPAPS Document No. E-AJPIAS-72-020408 for additional materials.
A direct link to this document may be found in the online article’s HTML reference section. The document may also be reached via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information.
47.
A positive definite quasi-probability distribution can be obtained by the use of a Gaussian “smearing” function in the definitions in Eqs. (4) or (5), which gives rise to the Husimi function,7,11 29PH(x,p;t). This quasi-probability density, however, does not give the correct marginal distributions as in Eqs. (7a) and (7b).
48.
R. L.
Hudson
, “
When is the Wigner quasi-probability density non-negative?
Rep. Math. Phys.
6
,
249
252
(
1974
);
F.
Soto
and
P.
Claverie
, “
When is the Wigner function of multi-dimensional systems nonnegative?
J. Math. Phys.
24
,
97
100
(
1983
).
49.
R. W. Robinett, Quantum Mechanics: Classical Results, Modern Systems, and Visualized Examples (Oxford, New York, 1997), pp. 123–126.
50.
One of the earliest pedagogical visualizations of the time dependence of such a two-state system is by
C.
Dean
, “
Simple Schrödinger wave functions which simulate classical radiating systems
,”
Am. J. Phys.
27
,
161
163
(
1959
).
51.
M.
Born
, “
Continuity, determinism, and reality
,”
Kgl. Danske Videns. Sels. Mat.-fys. Medd.
30
(
2
),
1
26
(
1955
).
Born was addressing concerns made by Einstein in “Elementare Überlegungen zur Interpretation der Grundlagen der Quanten-Mechanik,” in Scientific Papers Presented to Max Born (Oliver and Boyd, Edinburgh, 1953), pp. 33–40.
52.
M. A.
Doncheski
,
S.
Heppelmann
,
R. W.
Robinett
, and
D. C.
Tussey
, “
Wave packet construction in two-dimensional quantum billiards: Blueprints for the square, equilateral triangle, and circular cases
,”
Am. J. Phys.
71
,
541
557
(
2003
);
M. A.
Doncheski
,
S.
Heppelmann
,
R. W.
Robinett
, and
D. C.
Tussey
, arXiv:quant-ph/0307070.
53.
R. W.
Robinett
, “
Visualizing the collapse and revival of wave packets in the infinite square well using expectation values
,”
Am. J. Phys.
68
,
410
442
(
2000
);
R. W.
Robinett
, arXiv:quant-ph/0307041.
54.
M.
Kleber
, “
Exact solutions for time-dependent phenomena in quantum mechanics
,”
Phys. Rep.
236
,
331
393
(
1994
).
55.
M.
Andrews
, “
Wave packets bouncing off walls
,”
Am. J. Phys.
66
,
252
254
(
1998
).
56.
D. L.
Aronstein
and
C. R.
Stroud
, Jr.
, “
Fractional wave-function revivals in the infinite square well
,”
Phys. Rev. A
55
,
4526
4537
(
1997
).
57.
I. Sh.
Averbukh
and
N. F.
Perelman
, “
Fractional revivals: Universality in the long-term evolution of quantum wave packets beyond the correspondence principle dynamics
,”
Phys. Lett. A
39
,
449
453
(
1989
);
I. Sh.
Averbukh
and
N. F.
Perelman
, “
Fractional revivals of wave packets
,”
Acta Phys. Pol. A
78
,
33
40
(
1990
).
I. Sh.
Averbukh
and
N. F.
Perelman
, This paper includes much of the material in the first citation, correcting some minor typographical errors; “
Fractional regenerations of wave-packets in the course of long-term evolution of highly excited quantum-systems
,”
Sov. Phys. JETP
69
,
464
469
(
1989
).
58.
M. A.
Doncheski
and
R. W.
Robinett
, “
Comparing classical and quantum probability distributions for an asymmetric well
,”
Eur. J. Phys.
21
,
217
228
(
2000
).
59.
A.
Bonvalet
,
J.
Nagle
,
V.
Berger
,
A.
Migus
,
J.-L.
Martin
, and
M.
Joffre
, “
Femtosecond infrared emission resulting from coherent charge oscillations in quantum wells
,”
Phys. Rev. Lett.
76
,
4392
4395
(
1996
).
This content is only available via PDF.

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.