We describe a detailed experimental investigation into the dynamics of a sinusoidally forced string. We find qualitative agreement with the predictions of the averaged equations of motion for a string in the high damping regime. At low damping we observe more complex phenomena not present in the averaged equations.

1.
J. B.
Keller
, “
Large amplitude motion of a string
,”
Am. J. Phys.
27
,
584
586
(
1959
).
2.
P. Morse, Vibrations and Sound, 2nd ed. (McGraw–Hill, Boston, MA, 1936).
3.
J. A.
Elliott
, “
Intrinsic nonlinear effects in vibrating strings
,”
Am. J. Phys.
48
,
478
480
(
1980
);
J. A.
Elliott
, “
Nonlinear resonance in vibrating strings
,”
Am. J. Phys.
50
,
1148
1150
(
1982
).
4.
N. B.
Tufillaro
, “
Nonlinear and chaotic string vibrations
,”
Am. J. Phys.
57
,
408
414
(
1989
).
5.
J.
Johnson
and
A.
Bajaj
, “
Amplitude modulated and chaotic dynamics in resonant motion of strings
,”
J. Sound Vib.
128
,
87
107
(
1989
).
6.
A.
Bajaj
and
J.
Johnson
, “
On the amplitude dynamics and crsis in resonant motion of stretched strings
,”
Philos. Trans. R. Soc. London, Ser. A
338
,
1
41
(
1992
).
7.
O.
O’Reilly
and
P.
Holmes
, “
Non-linear, non-planar and non-periodic vibrations of a string
,”
J. Sound Vib.
153
,
413
435
(
1992
).
8.
O.
O’Reilly
, “
Global bifurcations in the forced vibrations of a damped string
,”
Int. J. Non-Linear Mech.
28
,
337
351
(
1993
).
9.
T.
Molteno
and
N.
Tufillaro
, “
Torus doubling and chaotic string vibrations: Experimental results
,”
J. Sound Vib.
137
,
327
330
(
1990
).
10.
T. C. A. Molteno, “Chaos and crisis in strings,” Ph.D. thesis, University of Otago, Dunedin, New Zealand, 1994.
11.
R. J.
Hanson
,
J. M.
Anderson
, and
H. K.
Macomber
, “
Measurements of nonlinear effects in a driven vibrating-wire
,”
J. Acoust. Soc. Am.
96
,
1549
1556
(
1994
).
12.
N. Tufillaro, T. Abbott, and J. Reilly, An Experimental Approach to Nonlinear Dynamics and Chaos (Addison-Wesley, Reading, MA, 1992).
13.
S. Strogatz, Nonlinear Dynamics and Chaos (Addition-Wesley, Reading, MA, 1994).
14.
R. C.
Hilborn
and
N. B.
Tufillaro
, “
Resource letter: ND-1: nonlinear dynamics
,”
Am. J. Phys.
65
,
822
834
(
1997
).
15.
J. E.
Berger
and
G.
Nunes
, “
A mechanical Duffing oscillator for undergraduate laboratory
,”
Am. J. Phys.
65
,
841
846
(
1997
).
16.
B. K.
Jones
and
G.
Trefan
, “
The Duffing oscillator: A precise electronic analog chaos demonstrator for the undergraduate laboratory
,”
Am. J. Phys.
69
,
464
469
(
2001
).
17.
N.
Sungar
,
J. P.
Sharpe
,
M. J.
Moelter
,
N.
Fleishon
,
K.
Morrision
,
J.
McDill
, and
R.
Schoonover
, “
A laboratory-based nonlinear dynamics course for science and engineering students
,”
Am. J. Phys.
69
,
591
597
(
2001
).
18.
R.
Narasihma
, “
Non-linear vibration of an elastic string
,”
J. Sound Vib.
8
,
134
146
(
1968
).
19.
J.
Miles
, “
Resonant, nonplanar motion of a stetched string
,”
J. Acoust. Soc. Am.
75
,
1505
1010
(
1984
).
20.
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer-Verlag, New York, NY, 1983).
21.
K.
Judd
and
A.
Mees
, “
Modeling chaotic motions of a string from experimental data
,”
Physica D
92
,
221
236
(
1996
).
22.
R. Gilmore and M. Lefranc, The Topology of Chaos (Wiley-Interscience, New York, NY, 2002).
23.
C.
Grebogi
,
E.
Ott
, and
J.
Yorke
, “
Crises, sudden changes in chaotic attractors and transient chaos
,”
Physica D
7
,
181
200
(
1983
).
24.
R. Hanson, “Optoelectronic detection of string vibration,” Phys. Teach. (March 1987), 165–166.
25.
J.
Brundell
and
T.
Molteno
,
Radioscientist
5
,
124
(
1994
).
26.
D. M.
Walker
,
N. B.
Tufillaro
, and
P.
Gross
, “
Radial-basis models for feedback systems with fading memory
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
48
,
1147
1151
(
2001
).
27.
L. Barford, N. Tufillaro, D. Usikov, L. Marochnik, and R. McCutcheon, “Calibration of Hubble space telescope focal-length variations using the emedding technique,” Flight Mechanics Symposium (NASA), edited by John P. Lynch, Goddard Space Flight Center, Greenbelt, Maryland, June 19–21 2001, pp. 485–495.
28.
E.
Knobloch
and
N.
Weiss
, “
Bifurcations in a model of magneto-convection
,”
Physica D
9
,
379
407
(
1983
).
29.
T.
Molteno
, “
A fast O(n) box-counting algorithm for estimating dimensions
,”
Phys. Rev. E
48
,
3263
3266
(
1993
).
30.
J.
Miles
, “
Damped spherical pendulum
,”
J. Sound Vib.
140
,
327
330
(
1993
).
31.
E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, U.K., 1993).
32.
H. Kantz and T. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press, Cambridge, U.K., 1997).
33.
R.
Brown
,
N.
Rulkov
, and
N.
Tufillaro
, “
Synchronization of chaotic systems—the effects of additive noise and drift in the dynamics of the driving
,”
Phys. Rev. E
50
,
4488
4508
(
1994
).
34.
N. B.
Tufillaro
,
P.
Wyckoff
,
R.
Brown
,
T.
Schreiber
, and
T.
Molteno
, “
Topological time series analysis of a string experiment and its synchronized model
,”
Phys. Rev. E
51
,
164
174
(
1995
).
35.
D. M.
Walker
and
A.
Mees
, “
Reconstructing nonlinear dynamics by extended Kalman filtering
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
8
,
557
569
(
1998
).
36.
R.
Gilmore
, “
Topological analysis of chaotic systems
,”
Rev. Mod. Phys.
70
,
1455
1529
(
1998
).
37.
D.
Allingham
,
M.
West
, and
A. I.
Mees
, “
Wavelet reconstruction of nonlinear dynamics
,”
Chaos
8
,
2191
2201
(
1998
).
38.
R.
Hegger
,
H.
Kantz
, and
T.
Schreiber
, “
Practical implementation of nonlinear time series methods: The TISEAN package
,”
Chaos
9
,
413
435
(
1999
).
39.
K.
Judd
and
M.
Small
, “
Towards long-term prediction
,”
Physica D
136
,
31
44
(
2000
).
40.
M.
Small
,
K.
Judd
, and
A.
Mees
, “
Modeling continuous processes from data
,”
Phys. Rev. E
65
,
046704
(
2002
).
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.