The dynamics of a quantum particle in a one-dimensional, tilted (“washboard”) and time-dependent lattice is studied. The approach uses quantum mechanics at the undergraduate level and leads to analytical results that show a rich variety of dynamical behavior and illustrate the fundamental role of interference in quantum systems.

1.
F.
Bloch
, “
Über die Quantenmechanik der Elektronen in Kristallgittern
,”
Z. Phys.
52
,
555
600
(
1928
).
2.
C.
Zener
, “
A theory of electrical breakdown of solid dielectrics
,”
Proc. R. Soc. London, Ser. A
145
,
523
529
(
1934
).
3.
G. H.
Wannier
, “
Wave functions and effective Hamiltonian for Bloch electrons in an electric field
,”
Phys. Rev.
117
,
432
439
(
1960
).
4.
E. E.
Mendez
,
F.
Agulló-Rueda
, and
J. M.
Hong
, “
Stark localization in GaAs–GaAlAs superlattices under an electric field
,”
Phys. Rev. Lett.
60
,
2426
2429
(
1988
).
5.
P.
Voisin
,
J.
Bleuse
,
C.
Bouche
,
S.
Gaillard
,
C.
Alibert
, and
A.
Regreny
, “
Observation of the Wannier–Stark quantization in a semiconductor superlattice
,”
Phys. Rev. Lett.
61
,
1639
1642
(
1988
).
6.
C.
Waschke
,
H. G.
Roskos
,
R.
Schwedler
,
K.
Leo
,
H.
Kurz
, and
K.
Köhler
, “
Coherent submillimeter-wave emission from Bloch oscillations in a semiconductor superlattice
,”
Phys. Rev. Lett.
70
,
3319
3322
(
1993
).
7.
M. Ben
Dahan
,
E.
Peik
,
J.
Reichel
,
Y.
Castin
, and
C.
Salomon
, “
Bloch oscillations of atoms in an optical potential
,”
Phys. Rev. Lett.
76
,
4508
4511
(
1996
).
8.
S. R.
Wilkinson
,
C. F.
Bharucha
,
K. W.
Madison
,
Q.
Niu
, and
M. G.
Raizen
, “
Observation of atomic Wannier–Stark ladders in an accelerating optical potential
,”
Phys. Rev. Lett.
76
,
4512
4515
(
1996
).
9.
Q.
Niu
,
X. G.
Zhao
,
G. A.
Georgakis
, and
M. G.
Raizen
, “
Atomic Landau–Zener tunneling and Wannier–Stark ladders in optical potentials
,”
Phys. Rev. Lett.
76
,
4504
4507
(
1996
).
10.
B. P.
Anderson
and
M.
Kasevich
, “
Microscopic quantum interference from atomic tunnel arrays
,”
Science
282
,
1686
1689
(
1998
).
11.
O.
Morsch
,
J. H.
Mueller
,
M.
Cristiani
,
D.
Ciampini
, and
E.
Arimondo
, “
Bloch oscillations and mean-field effects of Bose–Einstein condensates in 1D optical lattices
,”
Phys. Rev. Lett.
87
,
1404021
1404024
(
2001
).
12.
M. G.
Raizen
,
C.
Salomon
, and
Q.
Niu
, “
New light on quantum transport
,”
Phys. Today
50
(
7
),
30
34
(
1997
).
13.
C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons et Atomes: Processus d’Interaction (InterEditions, Paris, 1988);
English translation: Photon and Atoms: Basic Processes and Applications (Wiley, New York, 1997).
14.
H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer-Verlag, Berlin, 1999).
15.
P. Meystre, Atom Optics (Springer-Verlag, Berlin, 2001).
16.
Q.
Thommen
,
J. C.
Garreau
, and
V.
Zehnlé
, “
Theoretical analysis of quantum dynamics in one-dimensional lattices: Wannier–Stark description
,”
Phys. Rev. A
65
,
0534061
0534068
(
2002
).
17.
Several simple Maple programs for visualization of the results are available from 〈http://www.phlam.univ-lille1.fr/atfr/cq〉.
18.
N. W. Ashkroft and N. D. Mermin, Solid State Physics (Saunders College, Fort Worth, TX, 1976).
19.
We suppose that the system is enclosed in a large bounding box (containing many wells L≫1000) and consider the bulk properties that are not altered by boundary effects.
20.
By virtue of the translational properties of the WS states, Eq. (8), Xn,n+p(p≠0) does not depend on n:Xn,n+p=∫φn*(x)xφn+p(x)dx=∫φ0*(x−nd)xφp(x−nd)dx=∫φ0*(x)(x+nd)φp(x)dx=X0,p where we used the orthogonality of the WS states. Note, however, that Xn,n=X0,0+n does depend on n.
21.
It is important to note that WS states are localized in a well, but not perfectly: their wave function present a small secondary maximum in the neighbor wells. This secondary maximum decreases as the depth of the well increases. As a consequence, the superposition integrals of the type Xp=∫φn(x)xφn+p(x) are not zero for p∼1, but rapidly decrease with p. For F=3 and V0=25, we obtain numerically X1=0.13 (coupling to the next-neighbor, generating oscillations at frequency ωB), X2=7.8×10−3 (coupling to next-to-next neighbor, generating oscillations at frequency B). The amplitude of the oscillation at B is thus roughly 20 times smaller than that at ωB.
22.
C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics (Wiley, New York, 1977).
23.
E. Merzbacher, Quantum Mechanics 3rd ed. (Wiley, New York, 1998).
24.
This approximation is not necessary, but it simplifies the calculations without any loss of physical effects. For a treatment without this approximation, see Q. Thommen, J. C. Garreau, and V. Zehnlé, “Atomic motion in tilted optical lattices,” Arxiv quant-ph/0307118 (2003).
25.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1964).
26.
B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
27.
R.
Morandotti
,
U.
Peschel
,
J. S.
Aitchison
,
H. S.
Eisenberg
, and
Y.
Silberberg
, “
Experimental observation of linear and nonlinear optical Bloch oscillations
,”
Phys. Rev. Lett.
83
,
4756
4759
(
1999
).
28.
G.
Monsivais
,
M. D.
Castillo-Mussot
, and
F.
Claro
, “
Stark-ladder resonances in the propagation of electromagnetic waves
,”
Phys. Rev. Lett.
64
,
1433
1436
(
1990
).
29.
Readers unfamiliar with the properties of Fourier series can find good accounts in M. R. Spiegel, Schaum’s Outline of Fourier Analysis with Applications to Boundary Value Problems (McGraw-Hill, Columbus, OH, 1974);
E. Butkov, Mathematical Physics (Addison-Wesley, Reading, MA, 1973), for example.
30.
Q.
Thommen
,
J. C.
Garreau
, and
V.
Zehnlé
, “
Atomic motion in tilted optical lattices: an analytical approach
,”
J. Opt. B: Quantum Semiclass. Opt.
6
,
301
308
(
2004
).
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.