The dynamics of a quantum particle in a one-dimensional, tilted (“washboard”) and time-dependent lattice is studied. The approach uses quantum mechanics at the undergraduate level and leads to analytical results that show a rich variety of dynamical behavior and illustrate the fundamental role of interference in quantum systems.
REFERENCES
1.
F.
Bloch
, “Über die Quantenmechanik der Elektronen in Kristallgittern
,” Z. Phys.
52
, 555
–600
(1928
).2.
C.
Zener
, “A theory of electrical breakdown of solid dielectrics
,” Proc. R. Soc. London, Ser. A
145
, 523
–529
(1934
).3.
G. H.
Wannier
, “Wave functions and effective Hamiltonian for Bloch electrons in an electric field
,” Phys. Rev.
117
, 432
–439
(1960
).4.
E. E.
Mendez
, F.
Agulló-Rueda
, and J. M.
Hong
, “Stark localization in GaAs–GaAlAs superlattices under an electric field
,” Phys. Rev. Lett.
60
, 2426
–2429
(1988
).5.
P.
Voisin
, J.
Bleuse
, C.
Bouche
, S.
Gaillard
, C.
Alibert
, and A.
Regreny
, “Observation of the Wannier–Stark quantization in a semiconductor superlattice
,” Phys. Rev. Lett.
61
, 1639
–1642
(1988
).6.
C.
Waschke
, H. G.
Roskos
, R.
Schwedler
, K.
Leo
, H.
Kurz
, and K.
Köhler
, “Coherent submillimeter-wave emission from Bloch oscillations in a semiconductor superlattice
,” Phys. Rev. Lett.
70
, 3319
–3322
(1993
).7.
M. Ben
Dahan
, E.
Peik
, J.
Reichel
, Y.
Castin
, and C.
Salomon
, “Bloch oscillations of atoms in an optical potential
,” Phys. Rev. Lett.
76
, 4508
–4511
(1996
).8.
S. R.
Wilkinson
, C. F.
Bharucha
, K. W.
Madison
, Q.
Niu
, and M. G.
Raizen
, “Observation of atomic Wannier–Stark ladders in an accelerating optical potential
,” Phys. Rev. Lett.
76
, 4512
–4515
(1996
).9.
Q.
Niu
, X. G.
Zhao
, G. A.
Georgakis
, and M. G.
Raizen
, “Atomic Landau–Zener tunneling and Wannier–Stark ladders in optical potentials
,” Phys. Rev. Lett.
76
, 4504
–4507
(1996
).10.
B. P.
Anderson
and M.
Kasevich
, “Microscopic quantum interference from atomic tunnel arrays
,” Science
282
, 1686
–1689
(1998
).11.
O.
Morsch
, J. H.
Mueller
, M.
Cristiani
, D.
Ciampini
, and E.
Arimondo
, “Bloch oscillations and mean-field effects of Bose–Einstein condensates in 1D optical lattices
,” Phys. Rev. Lett.
87
, 1404021
–1404024
(2001
).12.
M. G.
Raizen
, C.
Salomon
, and Q.
Niu
, “New light on quantum transport
,” Phys. Today
50
(7
), 30
–34
(1997
).13.
C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons et Atomes: Processus d’Interaction (InterEditions, Paris, 1988);
English translation: Photon and Atoms: Basic Processes and Applications (Wiley, New York, 1997).
14.
H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer-Verlag, Berlin, 1999).
15.
P. Meystre, Atom Optics (Springer-Verlag, Berlin, 2001).
16.
Q.
Thommen
, J. C.
Garreau
, and V.
Zehnlé
, “Theoretical analysis of quantum dynamics in one-dimensional lattices: Wannier–Stark description
,” Phys. Rev. A
65
, 0534061
–0534068
(2002
).17.
Several simple Maple programs for visualization of the results are available from 〈http://www.phlam.univ-lille1.fr/atfr/cq〉.
18.
N. W. Ashkroft and N. D. Mermin, Solid State Physics (Saunders College, Fort Worth, TX, 1976).
19.
We suppose that the system is enclosed in a large bounding box (containing many wells and consider the bulk properties that are not altered by boundary effects.
20.
By virtue of the translational properties of the WS states, Eq. (8), does not depend on where we used the orthogonality of the WS states. Note, however, that does depend on
21.
It is important to note that WS states are localized in a well, but not perfectly: their wave function present a small secondary maximum in the neighbor wells. This secondary maximum decreases as the depth of the well increases. As a consequence, the superposition integrals of the type are not zero for but rapidly decrease with For and we obtain numerically (coupling to the next-neighbor, generating oscillations at frequency , (coupling to next-to-next neighbor, generating oscillations at frequency . The amplitude of the oscillation at is thus roughly 20 times smaller than that at
22.
C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics (Wiley, New York, 1977).
23.
E. Merzbacher, Quantum Mechanics 3rd ed. (Wiley, New York, 1998).
24.
This approximation is not necessary, but it simplifies the calculations without any loss of physical effects. For a treatment without this approximation, see Q. Thommen, J. C. Garreau, and V. Zehnlé, “Atomic motion in tilted optical lattices,” Arxiv quant-ph/0307118 (2003).
25.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1964).
26.
B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
27.
R.
Morandotti
, U.
Peschel
, J. S.
Aitchison
, H. S.
Eisenberg
, and Y.
Silberberg
, “Experimental observation of linear and nonlinear optical Bloch oscillations
,” Phys. Rev. Lett.
83
, 4756
–4759
(1999
).28.
G.
Monsivais
, M. D.
Castillo-Mussot
, and F.
Claro
, “Stark-ladder resonances in the propagation of electromagnetic waves
,” Phys. Rev. Lett.
64
, 1433
–1436
(1990
).29.
Readers unfamiliar with the properties of Fourier series can find good accounts in M. R. Spiegel, Schaum’s Outline of Fourier Analysis with Applications to Boundary Value Problems (McGraw-Hill, Columbus, OH, 1974);
E. Butkov, Mathematical Physics (Addison-Wesley, Reading, MA, 1973), for example.
30.
Q.
Thommen
, J. C.
Garreau
, and V.
Zehnlé
, “Atomic motion in tilted optical lattices: an analytical approach
,” J. Opt. B: Quantum Semiclass. Opt.
6
, 301
–308
(2004
).
This content is only available via PDF.
© 2004 American Association of Physics Teachers.
2004
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.