A harmonic analysis of the tides combines astronomical data, Fourier transformation, and nonlinear least-squares analysis. Fourier transformation is used to display the power spectrum of the initial data and, during the subsequent refinement stages of the analysis, of the remaining residuals. Because only a relatively small sample is used, the frequency resolution of the Fourier transformation is insufficient to determine the precise frequencies involved, which are instead taken from astronomical data. The actual fitting of successive terms, in order of decreasing importance, is accomplished with nonlinear least squares. Because both Fourier transformation and nonlinear least-squares fitting are readily automated on a spreadsheet, the amount of computational effort required for this analysis is minimal.

1.
G. H. Darwin, The Tides and Kindred Phenomena in the Solar System (Riverside, Cambridge, 1899), Chap. 4.
2.
S. Carter III, Kingdom of the Tides (Hawthorn Books, 1966), p. 17.
3.
J. Needham, Science and Civilisation in China (Cambridge U.P., Cambridge, 1959), Vol. 3, p. 488.
4.
Reference 3, pp. 490, 494.
5.
Z.
Yang
,
K. O.
Emery
, and
Y.
Xui
, “
Historical development and use of thousand-year-old tide-prediction tables
,”
Limnol. Oceanogr.
34
,
953
957
(
1989
).
6.
H. A. Marmer, The Tide (Appleton, New York, 1926), p. 168.
7.
Reproduced in Ref. 2, p. 21.
8.
R. A. Harris, Manual of Tides (USGPO, Washington, DC, 1897).
9.
I. Newton, Philosophiae Naturalis Principia Mathematica (Royal Society, London, 1687).
10.
E. P. Clancy, The Tides, Pulse of the Earth (Doubleday, Garden City, 1968), p. 11.
11.
P. S.
Laplace
, “
Recherches sur plusieurs points du Système du Monde
,”
Mém. Acad. R. Sci.
88
,
75
182
(
1775
).
12.
P. S.
Laplace
, “
Recherches sur plusieurs points du Système du Monde
,”
Mém. Acad. R. Sci.
89
,
177
264
(
1776
).
13.
D. E. Cartwright, Tides, A Scientific History (Cambridge U.P., Cambridge, 1999).
14.
W.
Thomson
, “Reports for 1868 and 1869 of the Committee for the purpose of promoting the extension, improvement, and harmonic analysis of Tidal Observations,” Reports of the British Association for the Advancement of Science 489–505 (1869);
120–151 (1870).
15.
P. Schureman, Manual of Harmonic Analysis and Prediction of Tides (USGPO, Washington, DC, 1941).
16.
E. I.
Butikov
, “
A dynamical picture of the oceanic tides
,”
Am. J. Phys.
70
,
1001
1011
(
2002
).
17.
J. J. Dronkers, Tidal Computations in Rivers and Coastal Waters (North-Holland, Amsterdam, 1964).
18.
This roundabout way of importing the data triggers the appearance of the Text Import Wizard in EXCEL, which facilitates their orderly entry into the spreadsheet, with one data point per spreadsheet cell.
19.
R. de Levie, How to Use Excel in Analytical Chemistry (Cambridge U.P., Cambridge, 2001), 〈www.uk.cambridge.org/chemistry/resources/delevie〉.
20.
R. de Levie, Advanced Excel for Scientific Data Analysis (Oxford U.P., New York, 2003), 〈www.oup-usa.org/advancedexcel〉.
21.
K.
Levenberg
, “
A method for the solution of certain non-linear problems in least-squares
,”
Q. Appl. Math.
2
,
164
168
(
1944
).
22.
D. W.
Marquardt
, “
An algorithm for least-squares estimation of nonlinear parameters
,”
J. Soc. Ind. Appl. Math.
11
,
431
441
(
1963
).
23.
R. de
Levie
, “
Estimating parameter precision in non-linear least squares with Excel’s Solver
,”
J. Chem. Educ.
76
,
1594
1598
(
1999
).
24.
G. Godin, The Analysis of Tides (University of Toronto Press, Toronto, 1972), p. 232.
25.
D. E.
Cartwright
, “
Oceanic tides
,”
Rep. Prog. Phys.
40
,
665
708
(
1977
).
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.