Nitinol wire is used to encode a three-dimensional structure in a linear chain. The folding of the structure progresses sequentially along the rigid wire from one end using only short-range forces. Three different shapes are constructed, an overhand pseudoknot, a protein structure with α-helices, and a protein structure without α-helices. The overhand pseudoknot was designed to be noncommutative so that forward folding along the chain results in the correct structure whereas reverse folding does not. The manipulation of nitinol wire structures leads to simple empirical rules for folding for noncommutative pseudoknots. Suggestions for additional noncommutative pseudoknot structures that can be designed both from wire and from DNA or RNA are given. The folding also can be accomplished using ordinary stiff wire. The folding of the wire provides an intuitive way to visualize sequential folding freed from a lattice.

1.
C. Ghélis and J. Yon, Protein Folding (Academic, New York, 1982).
2.
F. M.
Richards
, “
The protein folding problem
,”
Sci. Am.
264
,
54
63
(
1991
).
3.
http://folding.stanford.edu, http://GenomeAtHome.stanford.edu
4.
A. B. Ellis, M. J. Geselbracht, B. J. Johnson, G. C. Lisensky, and W. R. Robinson, Teaching General Chemistry: A Materials Science Companion (American Chemical Society, Washington, DC, 1993).
5.
L.
McDonald Schetky
, “
Shape-memory alloys
,”
Sci. Am.
241
,
74
82
(
1979
).
6.
M. Fremond and S. Miyazaki, Shape Memory Alloys (Springer, New York, 1996).
7.
A.
Adams
, “
Wiggling through the waves
,”
New Sci.
2155
,
32
35
(
1998
).
8.
A.
Lendlein
and
S.
Kelch
, “
Shape-memory polymers
,”
Angew. Chem., Int. Ed. Engl.
41
,
2034
2057
(
2002
).
9.
S.
Ashley
, “
Shape-shifters
,”
Sci. Am.
284
,
20
21
(
2001
).
10.
H. M.
Dintzis
, “
Assembly of the peptide chains of hemoglobin
,”
Proc. Natl. Acad. Sci. U.S.A.
47
,
247
261
(
1961
).
11.
M.-J.
Gething
and
J.
Sambrook
, “
Protein folding in the cell
,”
Nature (London)
355
,
33
45
(
1992
).
12.
Nitinol wire of 0.8 mm diameter was obtained from Goodfellow (Berwyn, PA) and wire of 0.47 mm diameter was from Small Parts (Miami Lakes, FL). Nitinol wire of various diameters is available from various vendors.
13.
http://www.rscb.org, File #1mbc.
14.
W. B. R. Lickorish, An Introduction to Knot Theory (Springer, New York, 1991).
15.
L. Stryer, Biochemistry, 4th ed. (W. H. Freeman, New York, 1995).
16.
P. A.
Jennings
and
P. E.
Wright
, “
Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin
,”
Science
262
,
892
896
(
1993
).
17.
S. N.
Loh
,
M. S.
Kay
, and
R. L.
Baldwin
, “
Structure and stability of a second molten globule intermediate in the apomyoglobin folding pathway
,”
Proc. Natl. Acad. Sci. U.S.A.
92
,
5446
5450
(
1995
).
18.
D.
Baker
, “
A surprising simplicity to protein folding
,”
Nature (London)
405
,
39
42
(
2000
).
19.
J. C.
Nelson
,
J. G.
Saven
,
J. S.
Moore
, and
P. G.
Wolynes
, “
Solvophobically driven folding of nonbiological oligomers
,”
Science
277
,
1793
1796
(
1997
).
20.
Y.
Ara
,
R.
Yasuda
,
K.-I.
Akashi
,
Y.
Harada
,
H.
Miyata
,
K.
Kinosita
, Jr.
, and
H.
Itoh
, “
Tying a molecular knot with optical tweezers
,”
Nature (London)
399
,
446
448
(
1999
).
21.
K.
Koniaris
and
M.
Muthukumar
, “
Knottedness in ring polymers
,”
Phys. Rev. Lett.
66
,
2211
2214
(
1991
).
22.
P.
Pieranski
,
S.
Kasas
,
G.
Dietler
,
J.
Dubochet
, and
A.
Stasiak
, “
Localization of breakage points in knotted strings
,”
New J. Phys.
3
,
10
.
1
10
.
13
(
2001
).
23.
W. R.
Taylor
, “
A deeply knotted protein structure and how it might fold
,”
Nature (London)
406
,
916
919
(
2000
).
24.
N. C.
Seeman
, “
DNA nanotechnology: Novel DNA constructions
,”
Annu. Rev. Biophys. Biomol. Struct.
27
,
225
248
(
1998
).
25.
J.
Yan
,
M. O.
Magnasco
, and
J. F.
Marko
, “
A kinetic proofreading mechanism for disentanglement of DNA by topoisomerases
,”
Nature (London)
401
,
932
935
(
1999
).
26.
J.
Cantarella
and
H.
Johnston
, “
Nontrivial embeddings of polygonal intervals and unknots in 3-space
,”
J. Knot Theory Ramif.
7
,
1027
1039
(
1998
).
27.
A. M.
Saitta
,
P. D.
Soper
,
E.
Wasserman
, and
M. L.
Klein
, “
Influence of a knot on the strength of a polymer strand
,”
Nature (London)
399
,
46
48
(
1999
).
28.
S. Y.
Shaw
and
J. C.
Wang
, “
Knotting of a DNA chain during ring closure
,”
Science
260
,
533
536
(
1993
).
29.
S. A.
Wasserman
and
N. R.
Cozzarelli
, “
Biochemical topology: Applications to DNA recombination and replication
,”
Science
232
,
951
960
(
1986
).
30.
M.
Zacharias
and
P. J.
Hagerman
, “
Bulge-induced bends in RNA: Quantification by transient electric birefringence
,”
J. Mol. Biol.
247
,
486
500
(
1995
).
31.
D. M. J.
Lilley
, “
Kinking of DNA and RNA by base bulges
,”
Proc. Natl. Acad. Sci. U.S.A.
92
,
7140
7142
(
1995
).
32.
S. C.
Schultz
,
G. C.
Shields
, and
T. A.
Steitz
, “
Crystal structure of the CAP–DNA complex: The DNA is bent by 90
,”
Science
253
,
1001
1007
(
1991
).
33.
A. N.
Kapanidis
,
Y. W.
Ebright
,
R. D.
Ludescher
,
S.
Chan
, and
R. H.
Ebright
, “
Mean DNA bend angle and distribution of DNA bend angles in the CAP–DNA complex in solution
,”
J. Mol. Biol.
312
,
453
468
(
2001
).
34.
M.
Dlakic
and
R. E.
Harrington
, “
Unconventional helical phasing of repetitive DNA motifs reveals their relative bending contributions
,”
Nucleic Acids Res.
26
,
4274
4279
(
1998
).
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.