We discuss the transitions that an external time-dependent perturbation can induce upon a quantum harmonic oscillator in an excited initial state. In particular, we show how to describe transitions of the oscillator from initial states characterized by statistical distributions. These results should be useful for interpretations of the properties of weakly dispersive bosonic excitations in quantum systems whose dynamics is investigated by time or energy resolved spectroscopies.

1.
I. I. Gol’dman and V. D. Krivchenkov, Problems in Quantum Mechanics (Addison–Wesley, Reading, MA, 1961);
V. I. Kogan and V. M. Galitskiy, Problems in Quantum Mechanics (Prentice–Hall, Englewood Cliffs, NJ, 1963).
2.
P.
Carruthers
and
M. M.
Nieto
, “
Coherent states and the forced quantum oscillator
,”
Am. J. Phys.
33
,
537
544
(
1965
).
3.
R. W.
Fuller
,
S. M.
Harris
, and
E. L.
Slaggie
, “
S-matrix solution for the forced harmonic oscillator
,”
Am. J. Phys.
31
,
431
439
(
1963
).
4.
L. M.
Scarfone
, “
Transition probabilities for the forced quantum oscillstor
,”
Am. J. Phys.
32
,
158
162
(
1964
).
5.
G. D. Mahan, Many-Particle Physics (Plenum, New York, 1981).
6.
E.
Müller-Hartmann
,
T. V.
Ramakrishnan
, and
G.
Toulouse
, “
Localized dynamic perturbations in metals
,”
Phys. Rev. B
3
,
1102
1119
(
1971
).
7.
B.
Gumhalter
, “
Single- and multiphonon atom-surface scattering in the quantum regime
,”
Phys. Rep.
351
,
1
159
(
2001
).
8.
W.
Brenig
, “
Theory of inelastic atom-surface scattering: Average energy loss and energy distribution
,”
Z. Phys. B
36
,
81
87
(
1979
);
J.
Böheim
and
W.
Brenig
, “
Theory of inelastic atom-surface scattering: Examples of energy distributions
,”
Z. Phys. B
41
,
243
250
(
1981
).
9.
A.
Nourtier
, “
Semiclassical theory of atom-surface inelastic scattering
,”
J. Phys. (Paris)
46
,
55
76
(
1985
).
10.
H.-D.
Meyer
, “
A semiclassical approach to inelastic scattering from solid surfaces and to the Debye-Waller factor
,”
Surf. Sci.
104
,
117
160
(
1981
).
11.
R.
Brako
, “
Energy and momentum transfer in scattering of low-energy atoms on metal surfaces
,”
Surf. Sci.
123
,
439
455
(
1982
).
12.
K.
Burke
and
W.
Kohn
, “
Finite Debye-Waller factor for ‘classical’ atom-surface scattering
,”
Phys. Rev. B
43
,
2477
2489
(
1991
).
13.
Th.
Brunner
and
W.
Brenig
, “
Elastic scattering, sticking and accommodation of noble gas atoms at a cold surface
,”
Surf. Sci.
291
,
192
206
(
1993
).
14.
M.
Persson
and
J.
Harris
, “
Trajectory approximation calculations of the sticking coefficient of Ne on Cu(100)
,”
Surf. Sci.
187
,
67
85
(
1987
);
S.
Andersson
,
L.
Wilzen
,
M.
Persson
, and
J.
Harris
, “
Sticking in the quantum regime: H2 and D2 on Cu(100)
,”
Phys. Rev. B
40
,
8146
8168
(
1989
).
15.
B.
Jackson
, “
Mean field approach to molecule-surface scattering at finite temperature: Multi-phonon theory
,”
J. Chem. Phys.
90
,
140
150
(
1989
);
B.
Jackson
, “
A semiclassical study of gas-solid energy transfer: He, Ne and Ar on metal surfaces
,”
J. Chem. Phys.
92
,
1458
1467
(
1990
)
16.
V.
Celli
,
D.
Himes
,
P.
Tran
,
J. P.
Toennies
,
Ch.
Wöll
, and
G.
Zhang
, “
Multiphonon processes in atom-surface scattering
,”
Phys. Rev. Lett.
66
,
3160
3163
(
1991
).
17.
A.
Bilić
and
B.
Gumhalter
, “
Quantum versus semiclassical treatment of multiphonon effects in He-atom scatering from surfaces
,”
Phys. Rev. B
52
,
12307
12328
(
1995
).
18.
J.
Braun
,
D.
Fuhrmann
,
A.
Šiber
,
B.
Gumhalter
, and
Ch.
Wöll
, “
Observation of a zone-center gap in the longitudinal mode of an adsorbate layer: Xe on Cu(111)
,”
Phys. Rev. Lett.
80
,
125
128
(
1998
).
19.
A.
Šiber
and
B.
Gumhalter
: “
Comment on ‘Quantum scattering of heavy particles from a 10 K Cu(111) surface
,’ ”
Phys. Rev. Lett.
81
,
1742
(
1998
).
20.
G.
Gumhalter
,
A.
Šiber
, and
J. P.
Toennies
, “
Recovery temperature for nonclassical energy transfer in atom-surface scattering
,”
Phys. Rev. Lett.
83
,
1375
1378
(
1999
).
21.
A.
Šiber
and
B.
Gumhalter
, “
Linear versus nonlinear coupling effects in single- and multiphonon atom-surface scattering
,”
Phys. Rev. Lett.
90
,
126103
(
2003
).
22.
F. J.
Dyson
, “
The radiation theories of Tomonaga, Schwinger and Feynman
,”
Phys. Rev.
75
,
486
502
(
1949
).
23.
S. S. Schweber, An Introduction to Relativistic Quantum Field Theory (Row, Petersson, Evanston, IL, 1961), Chap. 11, Sec. 6.
24.
M. L. Goldberger and K. M. Watson, Collision Theory (Wiley, New York, 1964), Chap. 2, Sec. 5.
25.
P. Nozières, Theory of Interacting Fermi Systems (Benjamin, New York, 1964), Chap. 5.
26.
A. A. Abrikosov, L. P. Gor’kov, and I. Ye. Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical Physics (Pergamon, New York, 1965), Chap. II.
27.
A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1965), Chap. XII, Sec. 8.
28.
Note that due to a misprint, the lower indices m and n of the Laguerre polynomials in Eqs. (5.13) and (5.15) of Ref. 2 should be replaced by n and m, respectively.
29.
I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products (Academic, New York, 1965).
30.
Higher Transcendental Functions, Vol. II, edited by A. Erdélyi (McGraw–Hill, New York, 1953).
31.
H. Ibach and D. L. Mills, Low Energy Electron Spectroscopy and Surface Vibrations (Academic, New York, 1982).
32.
A. P. Prudnikov, Yu. A. Brichkov, and O. I. Marichev, Integrals and Series, Special Functions (Nauka, Moscow, 1983) (in Russian) and (Taylor & Francis, London, 1990), 3rd ed.
33.
G. H.
Vineyard
, “
Scattering of slow neutrons by a liquid
,”
Phys. Rev.
110
,
999
1010
(
1958
).
34.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).
35.
R. J.
Glauber
, “
Coherent and incoherent states of the radiation field
,”
Phys. Rev.
131
,
2766
2788
(
1963
).
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.