We discuss the transitions that an external time-dependent perturbation can induce upon a quantum harmonic oscillator in an excited initial state. In particular, we show how to describe transitions of the oscillator from initial states characterized by statistical distributions. These results should be useful for interpretations of the properties of weakly dispersive bosonic excitations in quantum systems whose dynamics is investigated by time or energy resolved spectroscopies.
REFERENCES
1.
I. I. Gol’dman and V. D. Krivchenkov, Problems in Quantum Mechanics (Addison–Wesley, Reading, MA, 1961);
V. I. Kogan and V. M. Galitskiy, Problems in Quantum Mechanics (Prentice–Hall, Englewood Cliffs, NJ, 1963).
2.
P.
Carruthers
and M. M.
Nieto
, “Coherent states and the forced quantum oscillator
,” Am. J. Phys.
33
, 537
–544
(1965
).3.
R. W.
Fuller
, S. M.
Harris
, and E. L.
Slaggie
, “S-matrix solution for the forced harmonic oscillator
,” Am. J. Phys.
31
, 431
–439
(1963
).4.
L. M.
Scarfone
, “Transition probabilities for the forced quantum oscillstor
,” Am. J. Phys.
32
, 158
–162
(1964
).5.
G. D. Mahan, Many-Particle Physics (Plenum, New York, 1981).
6.
E.
Müller-Hartmann
, T. V.
Ramakrishnan
, and G.
Toulouse
, “Localized dynamic perturbations in metals
,” Phys. Rev. B
3
, 1102
–1119
(1971
).7.
B.
Gumhalter
, “Single- and multiphonon atom-surface scattering in the quantum regime
,” Phys. Rep.
351
, 1
–159
(2001
).8.
W.
Brenig
, “Theory of inelastic atom-surface scattering: Average energy loss and energy distribution
,” Z. Phys. B
36
, 81
–87
(1979
);J.
Böheim
and W.
Brenig
, “Theory of inelastic atom-surface scattering: Examples of energy distributions
,” Z. Phys. B
41
, 243
–250
(1981
).9.
A.
Nourtier
, “Semiclassical theory of atom-surface inelastic scattering
,” J. Phys. (Paris)
46
, 55
–76
(1985
).10.
H.-D.
Meyer
, “A semiclassical approach to inelastic scattering from solid surfaces and to the Debye-Waller factor
,” Surf. Sci.
104
, 117
–160
(1981
).11.
R.
Brako
, “Energy and momentum transfer in scattering of low-energy atoms on metal surfaces
,” Surf. Sci.
123
, 439
–455
(1982
).12.
K.
Burke
and W.
Kohn
, “Finite Debye-Waller factor for ‘classical’ atom-surface scattering
,” Phys. Rev. B
43
, 2477
–2489
(1991
).13.
Th.
Brunner
and W.
Brenig
, “Elastic scattering, sticking and accommodation of noble gas atoms at a cold surface
,” Surf. Sci.
291
, 192
–206
(1993
).14.
M.
Persson
and J.
Harris
, “Trajectory approximation calculations of the sticking coefficient of Ne on Cu(100)
,” Surf. Sci.
187
, 67
–85
(1987
);S.
Andersson
, L.
Wilzen
, M.
Persson
, and J.
Harris
, “Sticking in the quantum regime: and on Cu(100)
,” Phys. Rev. B
40
, 8146
–8168
(1989
).15.
B.
Jackson
, “Mean field approach to molecule-surface scattering at finite temperature: Multi-phonon theory
,” J. Chem. Phys.
90
, 140
–150
(1989
);B.
Jackson
, “A semiclassical study of gas-solid energy transfer: He, Ne and Ar on metal surfaces
,” J. Chem. Phys.
92
, 1458
–1467
(1990
)16.
V.
Celli
, D.
Himes
, P.
Tran
, J. P.
Toennies
, Ch.
Wöll
, and G.
Zhang
, “Multiphonon processes in atom-surface scattering
,” Phys. Rev. Lett.
66
, 3160
–3163
(1991
).17.
A.
Bilić
and B.
Gumhalter
, “Quantum versus semiclassical treatment of multiphonon effects in He-atom scatering from surfaces
,” Phys. Rev. B
52
, 12307
–12328
(1995
).18.
J.
Braun
, D.
Fuhrmann
, A.
Šiber
, B.
Gumhalter
, and Ch.
Wöll
, “Observation of a zone-center gap in the longitudinal mode of an adsorbate layer: Xe on Cu(111)
,” Phys. Rev. Lett.
80
, 125
–128
(1998
).19.
A.
Šiber
and B.
Gumhalter
: “Comment on ‘Quantum scattering of heavy particles from a 10 K Cu(111) surface
,’ ” Phys. Rev. Lett.
81
, 1742
(1998
).20.
G.
Gumhalter
, A.
Šiber
, and J. P.
Toennies
, “Recovery temperature for nonclassical energy transfer in atom-surface scattering
,” Phys. Rev. Lett.
83
, 1375
–1378
(1999
).21.
A.
Šiber
and B.
Gumhalter
, “Linear versus nonlinear coupling effects in single- and multiphonon atom-surface scattering
,” Phys. Rev. Lett.
90
, 126103
(2003
).22.
F. J.
Dyson
, “The radiation theories of Tomonaga, Schwinger and Feynman
,” Phys. Rev.
75
, 486
–502
(1949
).23.
S. S. Schweber, An Introduction to Relativistic Quantum Field Theory (Row, Petersson, Evanston, IL, 1961), Chap. 11, Sec. 6.
24.
M. L. Goldberger and K. M. Watson, Collision Theory (Wiley, New York, 1964), Chap. 2, Sec. 5.
25.
P. Nozières, Theory of Interacting Fermi Systems (Benjamin, New York, 1964), Chap. 5.
26.
A. A. Abrikosov, L. P. Gor’kov, and I. Ye. Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical Physics (Pergamon, New York, 1965), Chap. II.
27.
A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1965), Chap. XII, Sec. 8.
28.
Note that due to a misprint, the lower indices and of the Laguerre polynomials in Eqs. (5.13) and (5.15) of Ref. 2 should be replaced by and respectively.
29.
I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products (Academic, New York, 1965).
30.
Higher Transcendental Functions, Vol. II, edited by A. Erdélyi (McGraw–Hill, New York, 1953).
31.
H. Ibach and D. L. Mills, Low Energy Electron Spectroscopy and Surface Vibrations (Academic, New York, 1982).
32.
A. P. Prudnikov, Yu. A. Brichkov, and O. I. Marichev, Integrals and Series, Special Functions (Nauka, Moscow, 1983) (in Russian) and (Taylor & Francis, London, 1990), 3rd ed.
33.
G. H.
Vineyard
, “Scattering of slow neutrons by a liquid
,” Phys. Rev.
110
, 999
–1010
(1958
).34.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).
35.
R. J.
Glauber
, “Coherent and incoherent states of the radiation field
,” Phys. Rev.
131
, 2766
–2788
(1963
).
This content is only available via PDF.
© 2004 American Association of Physics Teachers.
2004
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.