This paper presents closed-form analytic solutions to two illustrative problems in solar physics that have been considered not solvable in this way previously. Both the outflow speed and the mass loss rate of the solar wind of plasma particles ejected by the Sun are derived analytically for certain illustrative approximations. The calculated radial dependence of the flow speed applies to both Parker’s isothermal solar wind equation and Bondi’s equation of spherical accretion. These problems involve the solution of transcendental equations containing products of variables and their logarithms. Such equations appear in many fields of physics and are solvable by use of the Lambert W function, which is briefly described. This paper is an example of how new functions can be applied to existing problems.

1.
H. Lamers and J. P. Cassinelli, Introduction to Stellar Winds (Cambridge U.P., Cambridge, UK, 1999).
2.
A. J. Hundhausen, Coronal Expansion and Solar Wind (Springer-Verlag, Berlin, 1972), pp. 5–11.
3.
Introduction to Space Physics, edited by M. G. Kivelson and C. T. Russell (Cambridge U.P., Cambridge, UK, 1995).
4.
L. Golub and J. M. Pasachoff, The Solar Corona (Cambridge U.P., Cambridge, UK, 1997).
5.
Space Weather, Geophysical Monograph Series, Vol. 125, edited by P. Song, H. J. Singer, and G. L. Siscoe (American Geophysical Union, Washington, DC, 2001).
6.
E. N.
Parker
, “
Dynamics of the interplanetary gas and magnetic fields
,”
Astrophys. J.
128
,
664
676
(
1958
).
7.
E. N. Parker, Interplanetary Dynamical Processes (Interscience, New York, 1963).
8.
Cosmic Winds and the Heliosphere, edited by J. R. Jokipii, C. P. Sonett, and M. S. Giampapa (University of Arizona Press, Tucson, 1997).
9.
M. J.
Aschwanden
,
A. I.
Poland
, and
D. M.
Rabin
, “
The new solar corona
,”
Annu. Rev. Astron. Astrophys.
39
,
175
210
(
2001
).
10.
S. R.
Cranmer
, “
Coronal holes and the high-speed solar wind
,”
Space Sci. Rev.
101
,
229
294
(
2002
).
11.
R. G.
Marsden
, “
The heliosphere after Ulysses
,”
Astrophys. Space Sci.
277
,
337
347
(
2001
).
12.
R. M.
Corless
,
G. H.
Gonnet
,
D. E. G.
Hare
,
D. J.
Jeffrey
, and
D. E.
Knuth
, “
On the Lambert W function
,”
Adv. Comput. Math.
5
,
329
359
(
1996
).
13.
R. B.
Mann
and
T.
Ohta
, “
Exact solution for the metric and the motion of two bodies in (1+1)-dimensional gravity
,”
Phys. Rev. D
55
,
4723
4747
(
1997
).
14.
S. R.
Valluri
,
D. J.
Jeffrey
, and
R. M.
Corless
, “
Some applications of the Lambert W function to physics
,”
Can. J. Phys.
78
,
823
831
(
2000
).
15.
B. A.
Magradze
, “
An analytic approach to perturbative QCD
,”
Int. J. Mod. Phys. A
15
,
2715
2733
(
2000
).
16.
J.-M.
Caillol
, “
Some applications of the Lambert W function to classical statistical mechanics
,”
J. Phys. A
36
,
10431
10442
(
2003
).
17.
K. M. Briggs, “W-ology, or, some exactly solvable growth models,” 1999, unpublished notes, 〈http://morebtexact.com/people/briggsk2/ W-ology.html〉.
18.
L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, Oxford, 1987), 2nd ed.
19.
After the wind is accelerated past the star’s escape velocity, the magnitude of the net outward force need not be large. Indeed, in the solar case both the inward force of gravity and the outward driving force tend to zero as r→∞, and thus the wind approaches an asymptotic coasting speed or terminal velocity.
20.
M.
Velli
, “
Hydrodynamics of the solar wind expansion
,”
Astrophys. Space Sci.
277
,
157
167
(
2001
).
21.
H.
Bondi
, “
On spherically symmetrical accretion
,”
Mon. Not. R. Astron. Soc.
112
,
195
204
(
1952
).
22.
S. K. Chakrabarti, Theory of Transonic Astrophysical Flows (World Scientific, Singapore, 1990).
23.
E. C.
Sittler
, Jr.
and
M.
Guhathakurta
, “
Semiempirical two-dimensional magnetohydrodynamic model of the solar corona and interplanetary medium
,”
Astrophys. J.
523
,
812
826
(
1999
).
24.
R.
Hammer
, “
Energy balance of stellar coronae, I. Methods and examples
,”
Astrophys. J.
259
,
767
778
(
1982
).
25.
G. L.
Withbroe
, “
The temperature structure, mass, and energy flow in the corona and inner solar wind
,”
Astrophys. J.
325
,
442
467
(
1988
).
26.
E.
Leer
and
E.
Marsch
, “
Solar wind models from the Sun to 1 AU: Constraints by in situ and remote sensing measurements
,”
Space Sci. Rev.
87
,
67
77
(
1999
).
27.
L. A.
Fisk
, “
Acceleration of the solar wind as a result of the reconnection of open magnetic flux with coronal loops
,”
J. Geophys. Res., [Space Phys.]
108
(
A4
),
1157
(
2003
).
28.
R.
Rosner
,
W. H.
Tucker
, and
G. S.
Vaiana
, “
Dynamics of the quiescent solar corona
,”
Astrophys. J.
220
,
643
665
(
1978
).
29.
Y.-M.
Wang
, “
Polar plumes and the solar wind
,”
Astrophys. J. Lett.
435
,
L153
L156
(
1994
).
30.
L. Spitzer, Jr., Physics of Fully Ionized Gases (Wiley, New York, 1962), 2nd ed.
31.
N.
Meyer-Vernet
, “
How does the solar wind blow? A simple kinetic model
,”
Eur. J. Phys.
20
,
167
176
(
1999
).
32.
M.
Banaszkiewicz
,
W. I.
Axford
, and
J. F.
McKenzie
, “
An analytic solar magnetic field model
,”
Astron. Astrophys.
337
,
940
944
(
1998
).
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.