This paper describes a device, consisting of a central source and two widely separated detectors with six switch settings each, that provides a simple gedanken demonstration of the nonclassical correlations that are the subject of Bell’s theorem without relying on either statistical effects or the occurrence of rare events. The mechanism underlying the operation of the device is revealed for readers with a knowledge of quantum mechanics.

1.
J. S.
Bell
, “
On the Einstein-Podolsky-Rosen paradox
,”
Physics (Long Island City, N.Y.)
1
,
195
200
(
1964
).
Reprinted in J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge U.P., Cambridge, New York, 1987).
2.
A popular exposition of Bell’s theorem can be found in
N. D.
Mermin
, “
Bringing home the atomic world: Quantum mysteries for anybody
,”
Am. J. Phys.
49
,
940
943
(
1981
).
An expanded version of this paper can be found as Chap. 12 in N. D. Mermin, Boojums All the Way Through (Cambridge U.P., Cambridge, 1990).
See also
N. D.
Mermin
, “
Is the moon there when nobody looks? Reality and the quantum theory
,”
Phys. Today
38
(
4
),
38
47
(
1985
).
3.
N. D.
Mermin
, “
Quantum mysteries revisited
,”
Am. J. Phys.
58
,
731
734
(
1990
). This is a nontechnical account of the GHZ proof of Bell’s theorem in Ref. 5.
4.
N. D.
Mermin
, “
Quantum mysteries refined
,”
Am. J. Phys.
62
,
880
887
(
1994
). This is a nontechnical account of Hardy’s proof of Bell’s theorem in Ref. 6.
5.
D. M. Greenberger, M. Horne, and A. Zeilinger, “Going beyond Bell’s theorem,” in Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, edited by M. Kafatos (Kluwer Academic, Dordrecht, 1989), pp. 69–72;
D. M.
Greenberger
,
M.
Horne
,
A.
Shimony
, and
A.
Zeilinger
, “
Bell’s theorem without inequalities
,”
Am. J. Phys.
58
,
1131
1143
(
1990
).
6.
L.
Hardy
, “
Non-locality for two particles without inequalities for almost all entangled states
,”
Phys. Rev. Lett.
71
,
1665
1668
(
1993
).
A simple, and mouth watering, account of Hardy’s discovery can also be found in
P. G.
Kwiat
and
L.
Hardy
, “
The mystery of the quantum cakes
,”
Am. J. Phys.
68
,
33
36
(
2000
).
7.
A.
Einstein
,
B.
Podolsky
, and
N.
Rosen
, “
Can quantum mechanical description of physical reality be considered complete?
Phys. Rev.
47
,
777
780
(
1935
).
8.
N. D.
Mermin
, “
Simple Unified Form for No-Hidden-Variables Theorems
,”
Phys. Rev. Lett.
65
,
3373
3376
(
1990
).
9.
A.
Peres
, “
Incompatible results of quantum measurements
,”
Phys. Lett. A
151
,
107
108
(
1990
).
10.
N. D.
Mermin
, “
Hidden variables and the two theorems of John Bell
,”
Rev. Mod. Phys.
65
,
803
815
(
1993
).
11.
J. S.
Bell
, “
On the problem of hidden variables in quantum mechanics
,”
Rev. Mod. Phys.
38
,
447
452
(
1966
);
S.
Kochen
and
E. P.
Specker
, “
The problem of hidden variables in quantum mechanics
,”
J. Math. Mech.
17
,
59
88
(
1967
).
12.
A.
Peres
, “
Two simple proofs of the Kochen-Specker theorem
,”
J. Phys. A
24
,
174
178
(
1991
).
13.
A.
Cabello
, “
Bell’s theorem without inequalities and probabilities for two observers
,”
Phys. Rev. Lett.
86
,
1911
1914
(
2001
);
A.
Cabello
, “
All versus nothing inseparability for two observers
,”
Phys. Rev. Lett.
87
,
010403
(
2001
).
14.
P. K.
Aravind
, “
Bell’s theorem without inequalities and only two distant observers
,”
Found. Phys. Lett.
15
,
399
405
(
2002
);
P. K.
Aravind
, quant-ph/0104133v6(
2001
).
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.