We describe a Monte Carlo algorithm for doing simulations in classical statistical physics in a different way. Instead of sampling the probability distribution at a fixed temperature, a random walk is performed in energy space to extract an estimate for the density of states. The probability can be computed at any temperature by weighting the density of states by the appropriate Boltzmann factor. Thermodynamic properties can be determined from suitable derivatives of the partition function and, unlike “standard” methods, the free energy and entropy can also be computed directly. To demonstrate the simplicity and power of the algorithm, we apply it to models exhibiting first-order or second-order phase transitions.
REFERENCES
1.
D. P. Landau and K. Binder, A Guide to Monte Carlo Methods in Statistical Physics (Cambridge U. P., Cambridge, 2000).
2.
D. P.
Landau
and R.
Alben
, “Monte Carlo calculations as an aid in teaching statistical mechanics
,” Am. J. Phys.
41
, 394
–400
(1973
).3.
N.
Metropolis
, A. W.
Rosenbluth
, M. N.
Rosenbluth
, A. H.
Teller
, and E.
Teller
, “Equation of state calculations by fast computing machines
,” J. Chem. Phys.
21
, 1087
–1092
(1953
).4.
R. H.
Swendsen
and J.-S.
Wang
, “Nonuniversal critical dynamics in Monte Carlo simulations
,” Phys. Rev. Lett.
58
, 86
–88
(1987
).5.
U.
Wolff
, “Collective Monte Carlo updating for spin systems
,” Phys. Rev. Lett.
62
, 361
–364
(1989
).6.
B. A.
Berg
and T.
Neuhaus
, “Multicanonical ensemble: A new approach to simulate first-order phase transitions
,” Phys. Rev. Lett.
68
, 9
–12
(1992
).7.
W.
Janke
and S.
Kappler
, “Multibondic cluster algorithm for Monte Carlo simulations of first-order phase transitions
,” Phys. Rev. Lett.
74
, 212
–215
(1995
).8.
W.
Janke
, “Multicanonical simulation of the two-dimensional 7-state Potts model
,” Int. J. Mod. Phys. C
3
, 1137
–1146
(1992
).9.
B. A.
Berg
, U.
Hansmann
, and T.
Neuhaus
, “Simulation of an ensemble with varying magnetic field: A numerical determination of the order-order interface tension in the Ising model
,” Phys. Rev. B
47
, 497
–500
(1993
).10.
W.
Janke
, “Multicanonical Monte Carlo simulations
,” Physica A
254
, 164
–178
(1998
).11.
B. A.
Berg
and T.
Celik
, “New approach to spin-glass simulations
,” Phys. Rev. Lett.
69
, 2292
–2295
(1992
).12.
N. A.
Alves
and U. H. E.
Hansmann
, “Partition function zeros and finite size scaling of helix-coil transitions in a polypeptide
,” Phys. Rev. Lett.
84
, 1836
–1839
(2000
).13.
A. M.
Ferrenberg
and R. H.
Swendsen
, “New Monte Carlo technique for studying phase transitions
,” Phys. Rev. Lett.
61
, 2635
–2638
(1988
);A. M.
Ferrenberg
and R. H.
Swendsen
, “Optimized Monte Carlo data analysis
,” Phys. Rev. Lett.
63
, 1195
–1198
(1989
).14.
P. D.
Beale
, “Exact distribution of energies in the two-dimensional Ising Model
,” Phys. Rev. Lett.
76
, 78
–81
(1996
).15.
J.
Lee
, “New Monte Carlo algorithm: Entropic sampling
,” Phys. Rev. Lett.
71
, 211
–214
(1993
).16.
P. M. C.
de Oliveira
, T. J. P.
Penna
, and H. J.
Herrmann
, “Broad histogram method
,” Braz. J. Phys.
26
, 677
–683
(1996
);P. M. C.
de Oliveira
, T. J. P.
Penna
, and H. J.
Herrmann
, “Broad histogram Monte Carlo
,” Eur. Phys. J. B
1
, 205
–208
(1998
).17.
J.-S.
Wang
and L. W.
Lee
, “Monte Carlo algorithms based on the number of potential moves
,” Comput. Phys. Commun.
127
, 131
–136
(2000
).18.
A. R.
Lima
, P. M. C.
de Oliveira
, and T. J. P.
Penna
, “A comparison between broad histogram and multicanonical methods
,” J. Stat. Phys.
99
, 691
–705
(2000
).19.
F.
Wang
and D. P.
Landau
, “Efficient, multiple-range random walk algorithm to calculate the density of states
,” Phys. Rev. Lett.
86
, 2050
–2053
(2001
);F.
Wang
and D. P.
Landau
, “Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram
,” Phys. Rev. E
64
, 056101
(2001
).20.
C.
Yamaguchi
and Y.
Okabe
, “Three-dimensional antiferromagnetic q-state Potts models: application of the Wang-Landau algorithm
,” J. Phys. A
34
, 8781
–8794
(2001
).21.
Y.
Okabe
, Y.
Tomita
, and C.
Yamaguchi
, “Application of new Monte Carlo algorithms to random spin systems
,” Comput. Phys. Commun.
146
, 63
–68
(2002
).22.
M.
Troyer
, S.
Wessel
, and F.
Alet
, “Flat histogram methods for quantum systems: Algorithms to overcome tunneling problems and calculate the free energy
,” Phys. Rev. Lett.
90
, 120201
(2003
).23.
P. N.
Vorontsov-Velyaminov
and A. P.
Lyubartsev
, “Entropic sampling in the path integral Monte Carlo method
,” J. Phys. A
36
, 685
–693
(2003
).24.
W.
Koller
, A.
Prüll
, H. G.
Evertz
, and W.
von der Linden
, “Uniform hopping approach to the ferromagnetic Kondo model at finite temperature
,” Phys. Rev. B
67
, 104432
(2003
).25.
T. S.
Jain
and J. J.
de Pablo
, “Calculation of interfacial tension from density of states
,” J. Chem. Phys.
118
, 4226
–4229
(2003
).26.
Q. L.
Yan
, R.
Faller
, and J. J.
de Pablo
, “Density-of-states Monte Carlo method for simulation of fluids
,” J. Chem. Phys.
116
, 8745
–8749
(2002
).27.
R.
Faller
and J. J.
de Pablo
, “Density of states of a binary Lennard-Jones glass
,” J. Chem. Phys.
119
, 4405
–4408
(2003
).28.
E. B.
Kim
, R.
Faller
, Q.
Yan
, N. L.
Abbott
, and J. J.
de Pablo
, “Potential of mean force between a spherical particle suspended in a nematic liquid crystal and a substrate
,” J. Chem. Phys.
117
, 7781
–7787
(2002
).29.
T. S.
Jain
and J. J.
de Pablo
, “A biased Monte Carlo technique for calculation of the density of states of polymer films
,” J. Chem. Phys.
116
, 7238
–7243
(2002
).30.
N.
Rathore
and J. J.
de Pablo
, “Monte Carlo simulation of proteins through a random walk in energy space
,” J. Chem. Phys.
116
, 7225
–7230
(2002
).31.
N.
Rathore
, T. A.
Knotts
, and J. J.
de Pablo
, “Density of states simulations of proteins
,” J. Chem. Phys.
118
, 4285
–4290
(2003
).32.
T. J. H.
Vlugt
, “Measurement of chemical potentials of systems with strong excluded volume interactions by computing the density of states
,” Mol. Phys.
100
, 2763
–2771
(2002
).33.
F.
Calvo
, “Sampling along reaction coordinates with the Wang-Landau method
,” Mol. Phys.
100
, 3421
–3427
(2002
).34.
F.
Calvo
and P.
Parneix
, “Statistical evaporation of rotating clusters. I. Kinetic energy released
,” J. Chem. Phys.
119
, 256
–264
(2003
).35.
M. A.
de Menezes
and A. R.
Lima
, “Using entropy-based methods to study general constrained parameter optimization problems
,” Physica A
323
, 428
–434
(2003
).36.
V.
Mustonen
and R.
Rajesh
, “Numerical estimation of the asymptotic behaviour of solid partitions of an integer
,” J. Phys. A
36
, 6651
–6659
(2003
).37.
C.
Yamaguchi
and N.
Kawashima
, “Combination of improved multibondic method and the Wang-Landau method
,” Phys. Rev. E
65
, 056710
(2002
).38.
B. J.
Schulz
, K.
Binder
, and M.
Müller
, “Flat histogram method of Wang-Landau and N-fold way
,” Int. J. Mod. Phys. C
13
, 477
–494
(2002
).39.
A.
Hüller
and M.
Pleimling
, “Microcanonical determination of the order parameter critical exponent
,” Int. J. Mod. Phys. C
13
, 947
–956
(2002
).40.
M. S.
Shell
, P. G.
Debenedetti
, and A. Z.
Panagiotopoulos
, “Generalization of the Wang-Landau method for off-lattice simulations
,” Phys. Rev. E
66
, 056703
(2002
).41.
B. J.
Schulz
, K.
Binder
, M.
Müller
, and D. P.
Landau
, “Avoiding boundary effects in Wang-Landau sampling
,” Phys. Rev. E
67
, 067102
(2003
).42.
See, for example,
L.
Onsager
, “Crystal statistics. I. A two-dimensional model with an order-disorder transition
,” Phys. Rev.
65
, 117
–149
(1944
).43.
44.
B. A.
Berg
and W.
Janke
, “Multioverlap simulations of the 3D Edwards-Anderson Ising spin glass
,” Phys. Rev. Lett.
80
, 4771
–4774
(1998
).45.
B. A.
Berg
, “Algorithmic aspects of multicanonical simulations
,” Nucl. Phys. B
63
, 982
–984
(1998
).46.
B. A.
Berg
, T.
Celik
, and U.
Hansmann
, “Multicanonical study of the 3D Ising spin-glass
,” Europhys. Lett.
22
, 63
–68
(1993
).47.
N. Hatano and J. E. Gubernatis, “Bivariate multicanonical Monte Carlo of the 3D spin glass,” in Computer Simulation Studies in Condensed Matter Physics XII, edited by D. P. Landau, S. P. Lewis, and H.-B. Schüttler (Springer, Berlin, 2000), pp. 149–161.
48.
B. A.
Berg
and U. H. E.
Hansmann
, “Configuration space for random walk dynamics
,” Eur. Phys. J. B
6
, 395
–398
(1998
).49.
U. H. E.
Hansmann
, “Effective way for determination of multicanonical weights
,” Phys. Rev. E
56
, 6200
–6203
(1997
).50.
U. H. E.
Hansmann
and Y.
Okamoto
, “Monte Carlo simulations in generalized ensemble: Multicanonical algorithm versus simulated tempering
,” Phys. Rev. E
54
, 5863
–5865
(1996
).51.
W.
Janke
, B. A.
Berg
, and A.
Billoire
, “Multi-overlap simulations of free-energy barriers in the 3D Edwards-Anderson Ising spin glass
,” Comput. Phys. Commun.
121/122
, 176
–179
(1999
).52.
J.-S.
Wang
, T. K.
Tay
, and R. H.
Swendsen
, “Transition matrix Monte Carlo reweighting and dynamics
,” Phys. Rev. Lett.
82
, 476
–479
(1999
).53.
D. P.
Landau
, “Finite-size behavior of the Ising square lattice
,” Phys. Rev. B
13
, 2997
–3011
(1976
).54.
A. E.
Ferdinand
and M. E.
Fisher
, “Bounded and inhomogeneous Ising models. I. Specific-heat anomaly of a finite lattice
,” Phys. Rev.
185
, 832
–846
(1969
).55.
K.
Binder
, K.
Vollmayr
, H. P.
Deutsch
, J. D.
Reger
, M.
Scheucher
, and D. P.
Landau
, “Monte Carlo methods for first-order phase transitions: some recent progress
,” Int. J. Mod. Phys. C
3
, 1025
–1058
(1992
).56.
M. S. S.
Challa
, D. P.
Landau
, and K.
Binder
, “Finite-size effects at temperature-driven first-order transitions
,” Phys. Rev. B
34
, 1841
–1852
(1986
).57.
See EPAPS Document No. E-AJPIAS-72-006406 for a sample code of the Wang-Landau algorithm for the 2D Ising model.
This document may also be retrieved via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps. See the EPAPS homepage for more information.
This content is only available via PDF.
© 2004 American Association of Physics Teachers.
2004
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.