We describe a Monte Carlo algorithm for doing simulations in classical statistical physics in a different way. Instead of sampling the probability distribution at a fixed temperature, a random walk is performed in energy space to extract an estimate for the density of states. The probability can be computed at any temperature by weighting the density of states by the appropriate Boltzmann factor. Thermodynamic properties can be determined from suitable derivatives of the partition function and, unlike “standard” methods, the free energy and entropy can also be computed directly. To demonstrate the simplicity and power of the algorithm, we apply it to models exhibiting first-order or second-order phase transitions.

1.
D. P. Landau and K. Binder, A Guide to Monte Carlo Methods in Statistical Physics (Cambridge U. P., Cambridge, 2000).
2.
D. P.
Landau
and
R.
Alben
, “
Monte Carlo calculations as an aid in teaching statistical mechanics
,”
Am. J. Phys.
41
,
394
400
(
1973
).
3.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
, “
Equation of state calculations by fast computing machines
,”
J. Chem. Phys.
21
,
1087
1092
(
1953
).
4.
R. H.
Swendsen
and
J.-S.
Wang
, “
Nonuniversal critical dynamics in Monte Carlo simulations
,”
Phys. Rev. Lett.
58
,
86
88
(
1987
).
5.
U.
Wolff
, “
Collective Monte Carlo updating for spin systems
,”
Phys. Rev. Lett.
62
,
361
364
(
1989
).
6.
B. A.
Berg
and
T.
Neuhaus
, “
Multicanonical ensemble: A new approach to simulate first-order phase transitions
,”
Phys. Rev. Lett.
68
,
9
12
(
1992
).
7.
W.
Janke
and
S.
Kappler
, “
Multibondic cluster algorithm for Monte Carlo simulations of first-order phase transitions
,”
Phys. Rev. Lett.
74
,
212
215
(
1995
).
8.
W.
Janke
, “
Multicanonical simulation of the two-dimensional 7-state Potts model
,”
Int. J. Mod. Phys. C
3
,
1137
1146
(
1992
).
9.
B. A.
Berg
,
U.
Hansmann
, and
T.
Neuhaus
, “
Simulation of an ensemble with varying magnetic field: A numerical determination of the order-order interface tension in the D=2 Ising model
,”
Phys. Rev. B
47
,
497
500
(
1993
).
10.
W.
Janke
, “
Multicanonical Monte Carlo simulations
,”
Physica A
254
,
164
178
(
1998
).
11.
B. A.
Berg
and
T.
Celik
, “
New approach to spin-glass simulations
,”
Phys. Rev. Lett.
69
,
2292
2295
(
1992
).
12.
N. A.
Alves
and
U. H. E.
Hansmann
, “
Partition function zeros and finite size scaling of helix-coil transitions in a polypeptide
,”
Phys. Rev. Lett.
84
,
1836
1839
(
2000
).
13.
A. M.
Ferrenberg
and
R. H.
Swendsen
, “
New Monte Carlo technique for studying phase transitions
,”
Phys. Rev. Lett.
61
,
2635
2638
(
1988
);
A. M.
Ferrenberg
and
R. H.
Swendsen
, “
Optimized Monte Carlo data analysis
,”
Phys. Rev. Lett.
63
,
1195
1198
(
1989
).
14.
P. D.
Beale
, “
Exact distribution of energies in the two-dimensional Ising Model
,”
Phys. Rev. Lett.
76
,
78
81
(
1996
).
15.
J.
Lee
, “
New Monte Carlo algorithm: Entropic sampling
,”
Phys. Rev. Lett.
71
,
211
214
(
1993
).
16.
P. M. C.
de Oliveira
,
T. J. P.
Penna
, and
H. J.
Herrmann
, “
Broad histogram method
,”
Braz. J. Phys.
26
,
677
683
(
1996
);
P. M. C.
de Oliveira
,
T. J. P.
Penna
, and
H. J.
Herrmann
, “
Broad histogram Monte Carlo
,”
Eur. Phys. J. B
1
,
205
208
(
1998
).
17.
J.-S.
Wang
and
L. W.
Lee
, “
Monte Carlo algorithms based on the number of potential moves
,”
Comput. Phys. Commun.
127
,
131
136
(
2000
).
18.
A. R.
Lima
,
P. M. C.
de Oliveira
, and
T. J. P.
Penna
, “
A comparison between broad histogram and multicanonical methods
,”
J. Stat. Phys.
99
,
691
705
(
2000
).
19.
F.
Wang
and
D. P.
Landau
, “
Efficient, multiple-range random walk algorithm to calculate the density of states
,”
Phys. Rev. Lett.
86
,
2050
2053
(
2001
);
F.
Wang
and
D. P.
Landau
, “
Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram
,”
Phys. Rev. E
64
,
056101
(
2001
).
20.
C.
Yamaguchi
and
Y.
Okabe
, “
Three-dimensional antiferromagnetic q-state Potts models: application of the Wang-Landau algorithm
,”
J. Phys. A
34
,
8781
8794
(
2001
).
21.
Y.
Okabe
,
Y.
Tomita
, and
C.
Yamaguchi
, “
Application of new Monte Carlo algorithms to random spin systems
,”
Comput. Phys. Commun.
146
,
63
68
(
2002
).
22.
M.
Troyer
,
S.
Wessel
, and
F.
Alet
, “
Flat histogram methods for quantum systems: Algorithms to overcome tunneling problems and calculate the free energy
,”
Phys. Rev. Lett.
90
,
120201
(
2003
).
23.
P. N.
Vorontsov-Velyaminov
and
A. P.
Lyubartsev
, “
Entropic sampling in the path integral Monte Carlo method
,”
J. Phys. A
36
,
685
693
(
2003
).
24.
W.
Koller
,
A.
Prüll
,
H. G.
Evertz
, and
W.
von der Linden
, “
Uniform hopping approach to the ferromagnetic Kondo model at finite temperature
,”
Phys. Rev. B
67
,
104432
(
2003
).
25.
T. S.
Jain
and
J. J.
de Pablo
, “
Calculation of interfacial tension from density of states
,”
J. Chem. Phys.
118
,
4226
4229
(
2003
).
26.
Q. L.
Yan
,
R.
Faller
, and
J. J.
de Pablo
, “
Density-of-states Monte Carlo method for simulation of fluids
,”
J. Chem. Phys.
116
,
8745
8749
(
2002
).
27.
R.
Faller
and
J. J.
de Pablo
, “
Density of states of a binary Lennard-Jones glass
,”
J. Chem. Phys.
119
,
4405
4408
(
2003
).
28.
E. B.
Kim
,
R.
Faller
,
Q.
Yan
,
N. L.
Abbott
, and
J. J.
de Pablo
, “
Potential of mean force between a spherical particle suspended in a nematic liquid crystal and a substrate
,”
J. Chem. Phys.
117
,
7781
7787
(
2002
).
29.
T. S.
Jain
and
J. J.
de Pablo
, “
A biased Monte Carlo technique for calculation of the density of states of polymer films
,”
J. Chem. Phys.
116
,
7238
7243
(
2002
).
30.
N.
Rathore
and
J. J.
de Pablo
, “
Monte Carlo simulation of proteins through a random walk in energy space
,”
J. Chem. Phys.
116
,
7225
7230
(
2002
).
31.
N.
Rathore
,
T. A.
Knotts
, and
J. J.
de Pablo
, “
Density of states simulations of proteins
,”
J. Chem. Phys.
118
,
4285
4290
(
2003
).
32.
T. J. H.
Vlugt
, “
Measurement of chemical potentials of systems with strong excluded volume interactions by computing the density of states
,”
Mol. Phys.
100
,
2763
2771
(
2002
).
33.
F.
Calvo
, “
Sampling along reaction coordinates with the Wang-Landau method
,”
Mol. Phys.
100
,
3421
3427
(
2002
).
34.
F.
Calvo
and
P.
Parneix
, “
Statistical evaporation of rotating clusters. I. Kinetic energy released
,”
J. Chem. Phys.
119
,
256
264
(
2003
).
35.
M. A.
de Menezes
and
A. R.
Lima
, “
Using entropy-based methods to study general constrained parameter optimization problems
,”
Physica A
323
,
428
434
(
2003
).
36.
V.
Mustonen
and
R.
Rajesh
, “
Numerical estimation of the asymptotic behaviour of solid partitions of an integer
,”
J. Phys. A
36
,
6651
6659
(
2003
).
37.
C.
Yamaguchi
and
N.
Kawashima
, “
Combination of improved multibondic method and the Wang-Landau method
,”
Phys. Rev. E
65
,
056710
(
2002
).
38.
B. J.
Schulz
,
K.
Binder
, and
M.
Müller
, “
Flat histogram method of Wang-Landau and N-fold way
,”
Int. J. Mod. Phys. C
13
,
477
494
(
2002
).
39.
A.
Hüller
and
M.
Pleimling
, “
Microcanonical determination of the order parameter critical exponent
,”
Int. J. Mod. Phys. C
13
,
947
956
(
2002
).
40.
M. S.
Shell
,
P. G.
Debenedetti
, and
A. Z.
Panagiotopoulos
, “
Generalization of the Wang-Landau method for off-lattice simulations
,”
Phys. Rev. E
66
,
056703
(
2002
).
41.
B. J.
Schulz
,
K.
Binder
,
M.
Müller
, and
D. P.
Landau
, “
Avoiding boundary effects in Wang-Landau sampling
,”
Phys. Rev. E
67
,
067102
(
2003
).
42.
See, for example,
L.
Onsager
, “
Crystal statistics. I. A two-dimensional model with an order-disorder transition
,”
Phys. Rev.
65
,
117
149
(
1944
).
43.
F. Y.
Wu
, “
The Potts model
,”
Rev. Mod. Phys.
54
,
235
268
(
1982
).
44.
B. A.
Berg
and
W.
Janke
, “
Multioverlap simulations of the 3D Edwards-Anderson Ising spin glass
,”
Phys. Rev. Lett.
80
,
4771
4774
(
1998
).
45.
B. A.
Berg
, “
Algorithmic aspects of multicanonical simulations
,”
Nucl. Phys. B
63
,
982
984
(
1998
).
46.
B. A.
Berg
,
T.
Celik
, and
U.
Hansmann
, “
Multicanonical study of the 3D Ising spin-glass
,”
Europhys. Lett.
22
,
63
68
(
1993
).
47.
N. Hatano and J. E. Gubernatis, “Bivariate multicanonical Monte Carlo of the 3D ±J spin glass,” in Computer Simulation Studies in Condensed Matter Physics XII, edited by D. P. Landau, S. P. Lewis, and H.-B. Schüttler (Springer, Berlin, 2000), pp. 149–161.
48.
B. A.
Berg
and
U. H. E.
Hansmann
, “
Configuration space for random walk dynamics
,”
Eur. Phys. J. B
6
,
395
398
(
1998
).
49.
U. H. E.
Hansmann
, “
Effective way for determination of multicanonical weights
,”
Phys. Rev. E
56
,
6200
6203
(
1997
).
50.
U. H. E.
Hansmann
and
Y.
Okamoto
, “
Monte Carlo simulations in generalized ensemble: Multicanonical algorithm versus simulated tempering
,”
Phys. Rev. E
54
,
5863
5865
(
1996
).
51.
W.
Janke
,
B. A.
Berg
, and
A.
Billoire
, “
Multi-overlap simulations of free-energy barriers in the 3D Edwards-Anderson Ising spin glass
,”
Comput. Phys. Commun.
121/122
,
176
179
(
1999
).
52.
J.-S.
Wang
,
T. K.
Tay
, and
R. H.
Swendsen
, “
Transition matrix Monte Carlo reweighting and dynamics
,”
Phys. Rev. Lett.
82
,
476
479
(
1999
).
53.
D. P.
Landau
, “
Finite-size behavior of the Ising square lattice
,”
Phys. Rev. B
13
,
2997
3011
(
1976
).
54.
A. E.
Ferdinand
and
M. E.
Fisher
, “
Bounded and inhomogeneous Ising models. I. Specific-heat anomaly of a finite lattice
,”
Phys. Rev.
185
,
832
846
(
1969
).
55.
K.
Binder
,
K.
Vollmayr
,
H. P.
Deutsch
,
J. D.
Reger
,
M.
Scheucher
, and
D. P.
Landau
, “
Monte Carlo methods for first-order phase transitions: some recent progress
,”
Int. J. Mod. Phys. C
3
,
1025
1058
(
1992
).
56.
M. S. S.
Challa
,
D. P.
Landau
, and
K.
Binder
, “
Finite-size effects at temperature-driven first-order transitions
,”
Phys. Rev. B
34
,
1841
1852
(
1986
).
57.
See EPAPS Document No. E-AJPIAS-72-006406 for a sample code of the Wang-Landau algorithm for the 2D Ising model.
This document may also be retrieved via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps. See the EPAPS homepage for more information.
This content is only available via PDF.

Supplementary Material

AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.