An introduction to quantum rotational tunneling and libration is presented with an emphasis on obtaining a qualitative understanding of this phenomenon through visualization of the dynamics, simple approximations, and measurements. The tunneling and librational dynamics of small molecular rotors are discussed using a very simple model of the rotational potential. Numerical calculations of the evolution of probability packets are carried out for the low-lying states and the connection is made between the quantum and classical librational dynamics. Finally, we present measurements of these quantum rotations using inelastic neutron scattering and show in particular how neutron scattering measurements of the ground state tunnel splitting and first librational transition can be used to characterize the magnitude and shape of the potential hindering the motion of the rotor. Some conceptual and computational problems are included that are suitable for undergraduate students.

1.
Chun C.
Lin
and
Jerome D.
Swalen
, “
Internal rotation and microwave spectroscopy
,”
Rev. Mod. Phys.
31
,
841
891
(
1959
).
2.
I. F.
Silvera
, “
The solid molecular hydrogens in the condensed phase: Fundamentals and static properties
,”
Rev. Mod. Phys.
52
,
393
452
(
1980
).
3.
W. Press, Single-Particle Rotations in Molecular Crystals (Springer Verlag, Berlin, 1981).
4.
Tung-Lin
Tsai
and
G.
Thomas
, “
Analog between optical waveguide system and quantum-mechanical tunneling
,”
Am. J. Phys.
44
,
636
638
(
1976
).
5.
E.
Condon
, “
Tunneling—how it all started
,”
Am. J. Phys.
46
,
319
323
(
1978
).
6.
Jeff. D.
Chalk
, “
A study of barrier penetration in quantum mechanics
,”
Am. J. Phys.
56
,
29
32
(
1988
).
7.
D.
Kiang
,
T.
Ochiai
, and
S.
Daté
, “
Tunneling through Fibonacci barriers
,”
Am. J. Phys.
58
,
1200
1201
(
1990
).
8.
Charles W.
Leming
and
Andrew
Van Smith
, “
A numerical study of quantum barrier penetration in one dimension
,”
Am. J. Phys.
59
,
441
443
(
1991
).
9.
Oscar J.
Riveros
, “
Tunneling between two inequivalent potential wells
,”
Am. J. Phys.
60
,
88
89
(
1992
).
10.
C. Julian Chen
Author
and
Walter F.
Smith
, “
Introduction to scanning tunneling microscopy
,”
Am. J. Phys.
62
,
573
574
(
1994
).
11.
H. J.
Reittu
, “
Fermi’s golden rule and Bardeen’s tunneling theory
,”
Am. J. Phys.
63
,
940
944
(
1995
).
12.
A.
Garg
, “
Tunnel splittings for one-dimensional potential wells revisited
,”
Am. J. Phys.
68
,
430
437
(
2000
).
13.
W. M.
Robertson
,
J.
Ash
, and
J. M.
McGaugh
, “
Breaking the sound barrier: Tunneling of acoustic waves through the forbidden transmission region of a one-dimensional acoustic band gap array
,”
Am. J. Phys.
70
,
689
693
(
2002
).
14.
L.
Pauling
, “
The rotational motion of molecules in crystals
,”
Phys. Rev.
36
,
430
443
(
1930
).
15.
It is interesting to note that Pauling did not refer to the tunneling motion as rotational tunneling. Rather he described the torsional motion (for a diatomic molecule) as one of “oscillational states, the molecule oscillating about an equilibrium orientation and changing end for end only rarely.” It is the rare “end for end” motion that is now referred to as quantum rotational tunneling. See Ref. 14, p. 434.
16.
M.
Prager
and
A.
Heidemann
, “
Rotational tunneling and neutron spectroscopy: A compilation
,”
Chem. Rev.
97
,
2933
2966
(
1997
).
17.
E. U.
Condon
, “
The physical pendulum in quantum mechanics
,”
Phys. Rev.
31
,
891
894
(
1928
).
18.
T.
Pradhan
and
A. V.
Khare
, “
Plane pendulum in quantum mechanics
,”
Am. J. Phys.
41
,
59
66
(
1973
).
19.
R.
Aldrovandi
and
P. Leal
Ferreira
, “
Quantum pendulum
,”
Am. J. Phys.
48
,
660
664
(
1980
).
20.
G. P.
Cook
and
Clyde S.
Zaidins
, “
The quantum point-mass pendulum
,”
Am. J. Phys.
54
,
259
261
(
1986
).
21.
G. L.
Baker
,
J. A.
Blackburn
, and
H. J. T.
Smith
, “
The quantum pendulum: Small and large
,”
Am. J. Phys.
70
,
525
531
(
2002
).
22.
M.
Neumann
and
M. R.
Johnson
, “
Methyl group tunneling-a quantitative probe of atom-atom potentials
,”
J. Chem. Phys.
107
,
1725
1731
(
1997
).
23.
C. J.
Carlile
and
M.
Prager
, “
Rotational tunneling spectroscopy with neutrons
,”
Int. J. Mod. Phys. A
7
,
3113
3151
(
1993
).
24.
H. W. Kroto, Molecular Rotation Spectra (Dover, New York, 1992), p. 56.
25.
D. F.
Styer
, “
The motion of wave packets through their expectation values and uncertainties
,”
Am. J. Phys.
58
,
742
744
(
1990
).
26.
R. W. Robinett, Quantum Mechanics: Classical Results, Modern Systems, and Visualized Examples (Oxford U. P., New York, 1997), pp. 206–208.
27.
Reference 26, p. 59.
28.
R. W.
Robinett
, “
Quantum and classical probability distributions for position and momentum
,”
Am. J. Phys.
63
,
823
832
(
1995
).
29.
Charles E. Hecht, Statistical Thermodynamics and Kinetic Theory (Freeman, New York, 1990), p. 115.
30.
J.
Peternelj
,
T.
Kranjc
, and
M. M.
Pintar
, “
Rotational motion of methyl groups in solids
,”
Phys. Rev. B
54
,
955
961
(
1996
).
31.
R. K. Pathria, Statistical Mechanics (Butterworth-Heinemann, Oxford, 1996), 2nd ed., pp. 77–79.
32.
M. A.
White
and
J. A.
Morrison
, “
Deductions about the structure of phase III from thermodynamic measurements on solid isotopic methanes
,”
J. Chem. Phys.
70
,
5384
5390
(
1979
).
33.
K. J.
Lushington
and
J. A.
Morrison
, “
Search for tunnel states in solid nitromethane
,”
J. Chem. Phys.
73
,
2015
2016
(
1980
).
34.
S. F.
Trevino
, “
An observation of one-dimensional reorientation and tunnel splitting of the ground and first excited state in a low barrier system: Solid nitromethane
,”
J. Chem. Phys.
71
,
1973
1974
(
1979
).
35.
S. F.
Trevino
, “
The measurement of tunnel states in solid CH3NO2 and CD3NO2,
J. Chem. Phys.
76
,
2578
2579
(
1982
).
36.
G. L. Squires, Introduction to the Theory of Thermal Neutron Scattering (Dover, New York, 1997).
37.
A. C.
Hewson
, “
The temperature dependence of inelastic neutron scattering in rotational tunneling systems. I. Formulation and perturbation theory
,”
J. Phys. C
15
,
3841
3853
(
1982
).
38.
A.
Würger
, “
The temperature dependence of rotational tunneling
,”
Z. Phys. B: Condens. Matter
76
,
65
76
(
1989
).
39.
P. M.
Gehring
and
D. A.
Neumann
, “
Backscattering spectroscopy at the NIST Center for Neutron Research
,”
Physica B
241–243
,
64
70
(
1998
).
40.
J. R. D.
Copley
,
D. A.
Neumann
, and
W. A.
Kamitakahara
, “
Energy distributions of neutrons scattered from solid C60 by the beryllium detector method
,”
Can. J. Phys.
73
,
763
771
(
1995
).
41.
M.
Prager
,
J.
Stanislawski
, and
W.
Hausler
, “
Inelastic incoherent neutron scattering study of the methyl rotation in various methyl halides
,”
J. Chem. Phys.
86
,
2563
2575
(
1987
).
42.
J.
Colmenero
,
R.
Mukhopadhyay
,
A.
Alegria
, and
B.
Frick
, “
Quantum rotational tunneling of methyl groups in polymers
,”
Phys. Rev.
80
,
2350
2353
(
1998
).
43.
C.
Gutt
,
B.
Asmussen
,
I.
Krasnov
,
W.
Press
,
W.
Langel
, and
R.
Kahn
, “
Dynamics of methane molecules in the mesopores of controlled-pore glass at low temperatures
,”
Phys. Rev. B
59
,
8607
8614
(
1999
).
44.
A. J.
Moreno
,
A.
Alegria
,
J.
Colmenero
, and
B.
Frick
, “
Methyl-group dynamics from tunneling to hopping in CH3COONa⋅3H2O: Comparison between a crystal and its glassy counterpart
,”
Phys. Rev. B
65
,
134202
(
2002
).
45.
R. M.
Dimeo
and
D. A.
Neumann
, “
Low-temperature dynamics of confined methyl iodide
,”
Phys. Rev. B
63
,
014301
-
1
014301
-
9
(
2001
).
46.
For more details see <http://www.ncnr.nist.gov/programs/CHRNS/outreach.html>.
47.
Available via ftp at <ftp://ftp.ncnr.nist.gov/pub/staff/dimeo/hfbss_01.pdf>.
48.
<http://www.ncnr.nist.gov/staff/dimeo/rotations. html>.
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.