We discuss aspects of the theory of critical phenomena and explore the superfluid transition in He4. We review some of the recent experimental and theoretical work on helium in nonequilibrium conditions and summarize some future space experiments that might shed light on disagreements between theory and experiment.

1.
D. L. Goodstein, States of Matter (Dover, New York, 1985), p. 266.
2.
H. Kammerling-Onnes, “The Liquefaction of Helium,” in Communications from the Physical Laboratory at the University of Leiden (Leiden University, Leiden, 1908), No. 108, p. 18.
3.
P. B.
Weichman
,
A. W.
Harter
, and
D. L.
Goodstein
, “
Colloquium: Criticality and superfluidity in liquid He4 under nonequilibrium conditions
,”
Rev. Mod. Phys.
73
,
1
15
(
2001
). This article provides a more technical approach to some of the same topics as this paper.
4.
Reference 1, p. 267.
5.
L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1 (Pergamon, Oxford, 1980), p. 258.
6.
E. A.
Guggenheim
, “
The principle of corresponding states
,”
J. Chem. Phys.
13
,
253
261
(
1945
).
7.
L.
Onsager
, “
Crystal statistics. I. A two-dimensional model with an order-disorder transition
,”
Phys. Rev.
65
,
117
149
(
1944
).
8.
P.
Heller
and
G. B.
Benedek
, “
Nuclear magnetic resonance in MnF2 near critical point
,”
Phys. Rev. Lett.
8
,
428
432
(
1962
).
9.
P.
Heller
and
G. B.
Benedek
, “
Nuclear resonance in EuS from 4.2 °K to the critical temperature region
,”
Phys. Rev. Lett.
14
,
71
74
(
1965
).
10.
A. V.
Voronel
, “
The heat capacity of Xe near the critical point and the value of Delta-3P
,”
Zh. Fiz. Khim.
35
,
958
959
(
1961
).
11.
M. I.
Bagatski
,
A. V.
Voronel
, and
V. G.
Gusak
, “
Measurement of the specific heat Cv of argon in the immediate vicinity of the critical point
,”
Sov. Phys. JETP
16
,
517
518
(
1963
).
12.
H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, New York, 1971). This book provides a summary of critical point theory up to 1971.
13.
B. D.
Josephson
, “
Relation between the superfluid density and order parameter for superfluid He near Tc,
Phys. Lett.
21
,
608
609
(
1966
).
14.
J. A.
Lipa
,
D. R.
Swanson
,
J. A.
Nissen
,
T. C. P.
Chui
, and
U. E.
Israelsson
, “
Heat capacity and thermal relaxation of bulk helium very near the lambda point
,”
Phys. Rev. Lett.
76
,
944
947
(
1996
).
15.
L. S.
Goldner
and
G.
Ahlers
, “
Superfluid fraction of He4 very close to Tλ,
Phys. Rev. B
45
,
13129
13132
(
1992
).
16.
See
M.
Campostrini
,
M.
Hasenbusch
,
A.
Pelissetto
,
P.
Rossi
, and
E.
Vicari
, “
Critical behavior of the three-dimensional XY universality class
,”
Phys. Rev. B
63
,
214503
1
(
2001
), and references therein.
17.
M. E. Fisher, “Scaling, universality, and renormalization group theory,” in Critical Phenomena, edited by F. J. W. Hahn (Springer-Verlag, Berlin, 1983).
18.
Reference 1, p. 454.
19.
C. J.
Gorter
and
J. H.
Mellink
, “
On the irreversible processes in liquid helium-II
,”
Physica (Amsterdam)
15
,
285
304
(
1949
).
20.
This form of the kinetic energy density assumes that ρs is not a function of us. It is actually a lower bound for the kinetic energy at a particular q, and therefore implies an upper bound on the calculated Qc.
21.
To get ξ from ρs, see Ref. 22, p. 460.
22.
P. C.
Hohenberg
and
B. I.
Halperin
, “
Theory of dynamic critical phenomena
,”
Rev. Mod. Phys.
49
,
435
479
(
1977
).
23.
A.
Onuki
, “
Theory of helium under heat-flow near the lambda-point. I. Interface of He-I and He-II
,”
J. Low Temp. Phys.
50
,
433
454
(
1983
).
24.
P. B.
Weichman
,
A.
Prasad
,
R.
Mukhopadhyay
, and
J.
Miller
, “
Trapped second sound waves on a nonequilibrium superfluid-normal interface
,”
Phys. Rev. Lett.
80
,
4923
4926
(
1998
).
25.
P. B.
Weichman
and
J.
Miller
, “
Theory of the self-organized critical state in nonequilibrium He4,
J. Low Temp. Phys.
119
,
155
179
(
2000
).
26.
R.
Haussmann
and
V.
Dohm
, “
Nonlinear heat-transport near the lambda-transition in He4,
Z. Phys. B: Condens. Matter
87
,
229
246
(
1992
).
27.
R.
Haussmann
and
V.
Dohm
, “
Heat-flow induced anomalies in superfluid He4 near Tλ,
Phys. Rev. Lett.
72
,
3060
3063
(
1994
).
28.
R.
Haussmann
, “
Heat transport and self-organized criticality in liquid He4 close to Tλ,
J. Low Temp. Phys.
114
,
1
10
(
1999
).
29.
R.
Haussmann
and
V.
Dohm
, “
Depression of the superfluid transition in He4-renormalization-group theory
,”
Phys. Rev. B
46
,
6361
6373
(
1992
).
30.
R.
Haussmann
, “
Liquid He4 near the superfluid transition in the presence of a heat current and gravity
,”
Phys. Rev. B
60
,
12349
12372
(
1999
).
31.
R. V.
Duncan
,
G.
Ahlers
, and
V.
Steinberg
, “
Depression of the superfluid transition-temperature in He4 by a heat current
,”
Phys. Rev. Lett.
60
,
1522
1525
(
1998
).
32.
A. W.
Harter
,
R. A. M.
Lee
,
A.
Chatto
,
X.
Wu
,
T. C. P.
Chui
, and
D. L.
Goodstein
, “
Enhanced heat capacity and a new temperature instability in superfluid He4 in the presence of a constant heat flux near Tλ,
Phys. Rev. Lett.
84
,
2195
2198
(
2000
).
33.
R. V.
Duncan
,
A. V.
Babkin
,
D. A.
Sergatskov
,
S. T. P.
Boyd
,
T. D.
McCarson
, and
P. K.
Day
, “
Decoherence under a heat flux near the superfluid transition in He4,
J. Low Temp. Phys.
121
,
643
652
(
2000
).
34.
H.
Fu
,
H.
Baddar
,
K.
Kuehn
, and
G.
Ahlers
, “
The boundary resistance between superfluid He4 near Tλ and a solid surface
,”
Fiz. Nizk. Temp.
24
(
2
),
101
103
(
1998
).
35.
K.
Kuehn
,
S.
Mehta
,
H.
Fu
,
E.
Genio
,
D.
Murphy
,
F.
Liu
,
Y.
Liu
, and
G.
Ahlers
, “
Singularity in the thermal boundary resistance between superfluid He4 and a solid surface
,”
Phys. Rev. Lett.
88
(
9
),
095702
-
1
095702
-
4
(
2002
).
36.
J.
Machta
,
D.
Candela
, and
R. B.
Hallock
, “
Self-organized criticality in He4 with a heat current
,”
Phys. Rev. B
47
,
4581
4581
(
1993
).
37.
G.
Ahlers
and
F. C.
Liu
, “
He4 very near Tλ heated from above
,”
J. Low Temp. Phys.
105
,
255
266
(
1996
).
38.
W. A.
Moeur
,
P. K.
Day
,
F. C.
Liu
,
S. T. P.
Boyd
,
M. J.
Adriaans
, and
R. V.
Duncan
, “
Observation of self-organized criticality near the superfluid transition in He4,
Phys. Rev. Lett.
78
,
2421
2424
(
1997
).
39.
M. J. Buckingham and W. M. Fairbank, “The nature of the λ-transition in liquid helium,” in Progress in Low Temperature Physics, edited by C. J. Gorter (North-Holland, Amsterdam, 1961), Vol. 3, pp. 80–112.
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.