We calculate certain features of Bose–Einstein condensation in the ideal gas by using recurrence relations for the partition function. The grand canonical ensemble gives inaccurate results for certain properties of the condensate that are accurately provided by the canonical ensemble. Calculations in the latter can be made tractable for finite systems by means of the recurrence relations. The ideal one-dimensional harmonic Bose gas provides a particularly simple and pedagogically useful model for which detailed results are easily derived. An analysis of the Bose system via permutation cycles yields insight into the physical meaning of the recurrence relations.

1.
M. H.
Anderson
,
J. R.
Ensher
,
M. R.
Matthews
,
C. E.
Wieman
, and
E. A.
Cornell
, “
Observation of Bose–Einstein condensation in a dilute atomic vapor
,”
Science
269
,
198
201
(
1995
);
K. B.
Davis
,
M.-O.
Mewes
,
M. R.
Andrews
,
N. J.
van Druten
,
D. S.
Durfee
,
D. M.
Kurn
, and
W.
Ketterle
, “
Bose–Einstein condensation in a gas of sodium atoms
,”
Phys. Rev. Lett.
75
,
3969
3973
(
1995
);
C. C.
Bradley
,
C. A.
Sackett
,
J. J.
Tollett
, and
R. G.
Hulet
, “
Bose–Einstein condensation of lithium: Observation of limited condensate number
,”
Phys. Rev. Lett.
78
,
985
989
(
1997
).
2.
For a review, see C. J. Pethick and H. Smith, Bose–Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2002).
3.
W. J.
Mullin
, “
Bose–Einstein condensation in a harmonic potential
,”
J. Low Temp. Phys.
106
,
615
641
(
1997
).
4.
K.
Damle
,
T.
Senthil
,
S. N.
Majumdar
, and
S.
Sachdev
, “
Phase transition of a Bose gas in a harmonic potential
,”
Europhys. Lett.
36
,
6
12
(
1996
).
5.
R. P. Feynman, Statistical Mechanics (W. A. Benjamin, Reading, MA, 1972).
6.
M. Toda, R. Kubo, and N. Saitô, Statistical Physics I (Springer-Verlag, Berlin, 1983).
7.
For example, Ref. 5 or K. Huang, Statistical Mechanics, 2nd ed. (Wiley, New York, 1987).
8.
F. London, Superfluids (Dover, New York, 1964), Vol. II, p. 203.
9.
W.
Ketterle
and
N. J.
van Druten
, “
Bose–Einstein condensation of a finite number of particles trapped in one or three dimensions
,”
Phys. Rev. A
54
,
656
660
(
1996
);
N. J.
van Druten
and
W.
Ketterle
, “
Two-step condensation of the ideal Bose gas in highly anisotropic traps
,”
Phys. Rev. Lett.
79
,
549
552
(
1997
).
10.
F.
Schreck
,
L.
Khaykovich
,
K. L.
Corwin
,
G.
Ferrari
,
T.
Bourdel
,
J.
Cubizolles
, and
C.
Salomon
, “
Quasipure Bose–Einstein condensate immersed in a Fermi sea
,”
Phys. Rev. Lett.
87
,
080403
-
1
080403
-
4
(
2001
).
11.
A.
Görlitz
,
J. M.
Vogels
,
A. E.
Leanhardt
,
C.
Raman
,
T. L.
Gustavson
,
J. R.
Abo-Shaeer
,
A. P.
Chikkatur
,
S.
Gupta
,
S.
Inouye
,
T.
Rosenband
, and
W.
Ketterle
, “
Realization of Bose–Einstein condensates in lower dimensions
,”
Phys. Rev. Lett.
87
,
130402
4
(
2001
).
12.
D. S.
Petrov
,
M.
Holzmann
, and
G. V.
Shlyapnikov
, “
Bose–Einstein condensation in quasi-2D trapped gases
,”
Phys. Rev. Lett.
84
,
2551
2555
(
2000
).
13.
D. S.
Petrov
,
G. V.
Shlyapnikov
, and
J. T. M.
Walraven
, “
Regimes of quantum degeneracy in trapped 1D gases
,”
Phys. Rev. Lett.
85
,
3745
3749
(
2000
).
14.
N. V.
Prokof’ev
,
O. A.
Ruebenacker
, and
B. V.
Svistunov
, “
Critical point of a weakly interacting two-dimensional Bose gas
,”
Phys. Rev. Lett.
87
,
270402
-
1
270402
-
4
(
2001
).
15.
I.
Fujiwara
,
D.
ter Haar
, and
H.
Wergeland
, “
Fluctuations in the population of the ground state of Bose systems
,”
J. Stat. Phys.
2
,
329
347
(
1970
).
16.
R. M.
Ziff
,
G. E.
Uhlenbeck
, and
M.
Kac
, “
The ideal gas revisited
,”
Phys. Rep.
32
,
169
248
(
1977
).
17.
S.
Grossmann
and
M.
Holthaus
, “
Microcanonical fluctuations of Bose system’s ground state occupation number
,”
Phys. Rev. E
54
,
3495
3498
(
1996
).
18.
S.
Grossmann
and
M.
Holthaus
, “
Maxwell’s demon at work: two types of Bose condensate fluctuations in power-law traps
,”
Opt. Express
1
,
262
271
(
1997
);
S.
Grossmann
and
M.
Holthaus
, “
Fluctuations of the particle number in a trapped Bose-Einstein condensate
,”
Phys. Rev. Lett.
79
,
3557
3560
(
1997
).
19.
S.
Grossmann
and
M.
Holthaus
, “
From number theory to statistical mechanics: Bose–Einstein condensation in isolated traps,” Proc. Heraeus-Sem. 1997
,
Chaos, Solitons Fractals
10
,
795
804
(
1999
).
20.
H. D.
Politzer
, “
Condensate fluctuations of a trapped, ideal Bose gas
,”
Phys. Rev. A
54
,
5048
5054
(
1996
).
21.
P.
Navez
,
D.
Bitouk
,
M.
Gajda
,
Z.
Idiaszek
, and
K.
Rza̧żewski
, “
Fourth statistical ensemble for the Bose–Einstein condensate
,”
Phys. Rev. Lett.
79
,
1789
1792
(
1997
).
22.
C.
Weiss
and
M.
Wilkens
, “
Particle number counting statistics in ideal Bose gases
,”
Opt. Express
1
,
272
283
(
1997
).
23.
M.
Wilkens
and
C.
Weiss
, “
Particle number fluctuations in an ideal Bose gas
,”
J. Mod. Opt.
44
,
1801
1814
(
1997
).
24.
M.
Gajda
and
K.
Rza̧żewski
, “
Fluctuations of the Bose–Einstein condensate
,”
Phys. Rev. Lett.
78
,
2686
2689
(
1997
).
25.
L.
Lemmens
,
F.
Brosens
, and
J.
Devreese
, “
Statistical mechanics and path integrals for a finite number of bosons
,”
Solid State Commun.
109
,
615
620
(
1999
).
26.
Z.
Idiaszek
,
M.
Gajda
,
P.
Navez
,
M.
Wilkens
, and
K.
Rza̧żewski
, “
Fluctuations of the weakly interacting Bose–Einstein condensate
,”
Phys. Rev. Lett.
82
,
4376
4379
(
1999
).
27.
F.
Illuminati
,
P.
Navez
, and
M.
Wilkens
, “
Thermodynamic identities and particle number fluctuations in weakly interacting Bose–Einstein condensates
,”
J. Phys. B
32
,
L461
L464
(
1999
).
28.
D. ter Haar, Elements of Statistical Mechanics (Rinehart, New York, 1954).
29.
F. C.
Auluck
and
D. S.
Kothari
, “
Statistical mechanics and the partitions of numbers
,”
Proc. Cambridge Philos. Soc.
42
,
272
277
(
1946
).
30.
H. N. V.
Temperley
, “
Statistical mechanics and the partition of numbers I. The transition of liquid helium
,”
Proc. R. Soc. London, Ser. A
199
,
361
375
(
1949
).
31.
V. S.
Nanda
, “
Bose–Einstein condensation and the partition theory of numbers
,”
Proc. Natl. Inst. Sci. (India)
19
,
681
690
(
1953
).
32.
K.
Schönhammer
and
V.
Meden
, “
Fermion-boson transmutation and comparison of statistical ensembles in one dimension
,”
Am. J. Phys.
64
,
1168
1176
(
1996
).
33.
G. E. Andrews, The Theory of Partitions (Addison-Wesley, Reading, MA, 1976).
34.
F.
Brosens
,
J. T.
Devreese
, and
L. F.
Lemmens
, “
Canonical Bose–Einstein condensation in a parabolic well
,”
Solid State Commun.
100
,
123
127
(
1996
).
35.
F.
Brosens
,
J. T.
Devreese
, and
L. F.
Lemmens
, “
Thermodynamics of coupled identical oscillators within the path-integral formalism
,”
Phys. Rev. E
55
,
227
236
(
1997
).
36.
K. C.
Chase
,
A. Z.
Mekjian
, and
L.
Zamick
, “
Canonical and microcanonical ensemble approaches to Bose–Einstein condensation: The thermodynamics of particles in harmonic traps
,”
Eur. Phys. J. B
8
,
281
285
(
1999
).
37.
M.
Toda
, “
On the relation between Fermions and Bosons
,”
J. Phys. Soc. Jpn.
7
,
230
(
1952
).
38.
K.
Schönhammer
, “
Thermodynamics and occupation numbers of a Fermi gas in the canonical ensemble
,”
Am. J. Phys.
68
,
1032
1037
(
2000
).
39.
R. M.
May
, “
Quantum statistics of ideal gases in two dimensions
,”
Phys. Rev.
135
,
A1515
A1518
(
1964
).
40.
R.
Aldrovandi
, “
Two-dimensional quantum gases
,”
Fortschr. Phys.
40
,
631
649
(
1992
).
41.
S.
Viefers
,
F.
Ravndal
, and
T.
Haugset
, “
Ideal quantum gases in two dimensions
,”
Am. J. Phys.
63
,
369
376
(
1995
).
42.
M.
Lee
, “
Equivalence of ideal gases in two dimensions and Landen’s relations
,”
Phys. Rev. E
55
,
1518
1520
(
1997
).
43.
H.
Schmidt
, “
A simple derivation of distribution functions for Bose and Fermi statistics
,”
Am. J. Phys.
57
,
1150
1151
(
1989
).
44.
T.
Sakai
, “
Gibbs’ canonical ensemble and the distribution law in statistical mechanics
,”
Proc. Phys. Math. Soc. Jpn.
22
,
193
207
(
1940
).
45.
F.
Ansbacher
and
W.
Ehrenberg
, “
The derivation of statistical expressions from Gibbs’ canonical ensemble
,”
Philos. Mag.
40
,
626
631
(
1949
).
46.
P. T. Landsberg, Thermodynamics (Interscience, New York, 1961).
47.
F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York, 1965). Section 9.3 presents a somewhat similar derivation of the distribution functions via the canonical ensemble.
48.
P.
Borrmann
and
G.
Franke
, “
Recursion formulas for quantum statistical partition functions
,”
J. Chem. Phys.
98
,
2484
2485
(
1993
).
49.
J.
Tempere
and
J. T.
Devreese
, “
Canonical Bose–Einstein condensation of interacting bosons in two dimensions
,”
Solid State Commun.
101
,
657
659
(
1997
).
50.
F.
Brosens
,
J. T.
Devreese
, and
L. F.
Lemmens
, “
Correlations in a confined gas of harmonically interacting spin-polarized fermions
,”
Phys. Rev. E
58
,
1634
1643
(
1998
).
51.
B. Eckhardt, “Eigenvalue statistics in quantum ideal gases,” in Emerging Applications in Number Theory, edited by D. Hejkal et al. (Springer, New York, 1997), pp. 187–199.
52.
P.
Borrmann
,
J.
Hartig
,
O.
Mülken
, and
E. R.
Hilf
, “
Calculation of thermodynamic properties of finite Bose–Einstein systems
,”
Phys. Rev. A
60
,
1519
1521
(
1999
).
53.
M.
Holzmann
and
W.
Krauth
, “
Transition temperature of the homogeneous weakly interacting Bose gas
,”
Phys. Rev. Lett.
83
,
2687
2690
(
1999
).
54.
S.
Pratt
, “
Canonical and microcanonical calculations for Fermi systems
,”
Phys. Rev. Lett.
84
,
4255
4259
(
2000
).
55.
F.
Philippe
,
J.
Arnaud
, and
L.
Chusseau
, “
Statistics of non-interacting bosons and fermions in microcanonical, canonical, and grand-canonical ensembles: A survey
,” math-ph/0211029.
56.
D. I.
Ford
, “
A note on the partition function for systems of independent particles
,”
Am. J. Phys.
39
,
215
230
(
1971
).
57.
H.-J.
Schmidt
and
J.
Schnack
, “
Partition functions and symmetric polynomials
,”
Am. J. Phys.
70
,
53
57
(
2002
);
H.-J.
Schmidt
and
J.
Schnack
, “
Symmetric polynomials in physics
,” cond-mat/0209397.
58.
T.
Matsubara
, “
Quantum-statistical theory of liquid Helium
,”
Prog. Theor. Phys.
6
,
714
730
(
1951
).
59.
W. J.
Mullin
, “
The loop-gas approach to Bose–Einstein condensation for trapped particles
,”
Am. J. Phys.
68
,
120
128
(
2000
);
W. J.
Mullin
, “
Permutation cycles in the Bose–Einstein condensation of a trapped gas
,”
Physica B
284–288
,
7
8
(
2000
).
60.
P.
Grüter
,
D. M.
Ceperley
, and
F.
Laloë
, “
Critical temperature of Bose–Einstein condensation of hard-sphere gases
,”
Phys. Rev. Lett.
79
,
3549
3552
(
1997
).
61.
M.
Holzmann
,
P.
Grüter
, and
F.
Laloë
, “
Bose–Einstein condensation in interacting gases
,”
Eur. Phys. J. B
10
,
739
760
(
1999
).
62.
W.
Krauth
, “
Quantum Monte Carlo calculations for a large number of bosons in a harmonic trap
,”
Phys. Rev. Lett.
77
,
3695
3698
(
1996
).
63.
S.
Heinrichs
and
W. J.
Mullin
, “
Quantum Monte Carlo calculations for bosons in a two-dimensional harmonic trap
,”
J. Low Temp. Phys.
113
,
231
236
(
1998
);
S.
Heinrichs
and
W. J.
Mullin
,
J. Low Temp. Phys.
erratum
114
,
571
(
1999
).
64.
W. J.
Mullin
,
S.
Heinrichs
, and
J. P.
Fernández
, “
The condensate number in PIMC treatments of trapped bosons
,”
Physica B
284–288
,
9
10
(
2000
).
65.
An exception to the statement that recurrence relations hold only for ideal systems is the harmonically interacting system studied in Refs. 35, 49, and 50.
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.