We calculate certain features of Bose–Einstein condensation in the ideal gas by using recurrence relations for the partition function. The grand canonical ensemble gives inaccurate results for certain properties of the condensate that are accurately provided by the canonical ensemble. Calculations in the latter can be made tractable for finite systems by means of the recurrence relations. The ideal one-dimensional harmonic Bose gas provides a particularly simple and pedagogically useful model for which detailed results are easily derived. An analysis of the Bose system via permutation cycles yields insight into the physical meaning of the recurrence relations.
REFERENCES
1.
M. H.
Anderson
, J. R.
Ensher
, M. R.
Matthews
, C. E.
Wieman
, and E. A.
Cornell
, “Observation of Bose–Einstein condensation in a dilute atomic vapor
,” Science
269
, 198
–201
(1995
);K. B.
Davis
, M.-O.
Mewes
, M. R.
Andrews
, N. J.
van Druten
, D. S.
Durfee
, D. M.
Kurn
, and W.
Ketterle
, “Bose–Einstein condensation in a gas of sodium atoms
,” Phys. Rev. Lett.
75
, 3969
–3973
(1995
);C. C.
Bradley
, C. A.
Sackett
, J. J.
Tollett
, and R. G.
Hulet
, “Bose–Einstein condensation of lithium: Observation of limited condensate number
,” Phys. Rev. Lett.
78
, 985
–989
(1997
).2.
For a review, see C. J. Pethick and H. Smith, Bose–Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2002).
3.
W. J.
Mullin
, “Bose–Einstein condensation in a harmonic potential
,” J. Low Temp. Phys.
106
, 615
–641
(1997
).4.
K.
Damle
, T.
Senthil
, S. N.
Majumdar
, and S.
Sachdev
, “Phase transition of a Bose gas in a harmonic potential
,” Europhys. Lett.
36
, 6
–12
(1996
).5.
R. P. Feynman, Statistical Mechanics (W. A. Benjamin, Reading, MA, 1972).
6.
M. Toda, R. Kubo, and N. Saitô, Statistical Physics I (Springer-Verlag, Berlin, 1983).
7.
For example, Ref. 5 or K. Huang, Statistical Mechanics, 2nd ed. (Wiley, New York, 1987).
8.
F. London, Superfluids (Dover, New York, 1964), Vol. II, p. 203.
9.
W.
Ketterle
and N. J.
van Druten
, “Bose–Einstein condensation of a finite number of particles trapped in one or three dimensions
,” Phys. Rev. A
54
, 656
–660
(1996
);N. J.
van Druten
and W.
Ketterle
, “Two-step condensation of the ideal Bose gas in highly anisotropic traps
,” Phys. Rev. Lett.
79
, 549
–552
(1997
).10.
F.
Schreck
, L.
Khaykovich
, K. L.
Corwin
, G.
Ferrari
, T.
Bourdel
, J.
Cubizolles
, and C.
Salomon
, “Quasipure Bose–Einstein condensate immersed in a Fermi sea
,” Phys. Rev. Lett.
87
, 080403
-1
080403
-4
(2001
).11.
A.
Görlitz
, J. M.
Vogels
, A. E.
Leanhardt
, C.
Raman
, T. L.
Gustavson
, J. R.
Abo-Shaeer
, A. P.
Chikkatur
, S.
Gupta
, S.
Inouye
, T.
Rosenband
, and W.
Ketterle
, “Realization of Bose–Einstein condensates in lower dimensions
,” Phys. Rev. Lett.
87
, 130402
–4
(2001
).12.
D. S.
Petrov
, M.
Holzmann
, and G. V.
Shlyapnikov
, “Bose–Einstein condensation in quasi-2D trapped gases
,” Phys. Rev. Lett.
84
, 2551
–2555
(2000
).13.
D. S.
Petrov
, G. V.
Shlyapnikov
, and J. T. M.
Walraven
, “Regimes of quantum degeneracy in trapped 1D gases
,” Phys. Rev. Lett.
85
, 3745
–3749
(2000
).14.
N. V.
Prokof’ev
, O. A.
Ruebenacker
, and B. V.
Svistunov
, “Critical point of a weakly interacting two-dimensional Bose gas
,” Phys. Rev. Lett.
87
, 270402
-1
270402
-4
(2001
).15.
I.
Fujiwara
, D.
ter Haar
, and H.
Wergeland
, “Fluctuations in the population of the ground state of Bose systems
,” J. Stat. Phys.
2
, 329
–347
(1970
).16.
R. M.
Ziff
, G. E.
Uhlenbeck
, and M.
Kac
, “The ideal gas revisited
,” Phys. Rep.
32
, 169
–248
(1977
).17.
S.
Grossmann
and M.
Holthaus
, “Microcanonical fluctuations of Bose system’s ground state occupation number
,” Phys. Rev. E
54
, 3495
–3498
(1996
).18.
S.
Grossmann
and M.
Holthaus
, “Maxwell’s demon at work: two types of Bose condensate fluctuations in power-law traps
,” Opt. Express
1
, 262
–271
(1997
);S.
Grossmann
and M.
Holthaus
, “Fluctuations of the particle number in a trapped Bose-Einstein condensate
,” Phys. Rev. Lett.
79
, 3557
–3560
(1997
).19.
S.
Grossmann
and M.
Holthaus
, “From number theory to statistical mechanics: Bose–Einstein condensation in isolated traps,” Proc. Heraeus-Sem. 1997
, Chaos, Solitons Fractals
10
, 795
–804
(1999
).20.
H. D.
Politzer
, “Condensate fluctuations of a trapped, ideal Bose gas
,” Phys. Rev. A
54
, 5048
–5054
(1996
).21.
P.
Navez
, D.
Bitouk
, M.
Gajda
, Z.
Idiaszek
, and K.
Rza̧żewski
, “Fourth statistical ensemble for the Bose–Einstein condensate
,” Phys. Rev. Lett.
79
, 1789
–1792
(1997
).22.
C.
Weiss
and M.
Wilkens
, “Particle number counting statistics in ideal Bose gases
,” Opt. Express
1
, 272
–283
(1997
).23.
M.
Wilkens
and C.
Weiss
, “Particle number fluctuations in an ideal Bose gas
,” J. Mod. Opt.
44
, 1801
–1814
(1997
).24.
M.
Gajda
and K.
Rza̧żewski
, “Fluctuations of the Bose–Einstein condensate
,” Phys. Rev. Lett.
78
, 2686
–2689
(1997
).25.
L.
Lemmens
, F.
Brosens
, and J.
Devreese
, “Statistical mechanics and path integrals for a finite number of bosons
,” Solid State Commun.
109
, 615
–620
(1999
).26.
Z.
Idiaszek
, M.
Gajda
, P.
Navez
, M.
Wilkens
, and K.
Rza̧żewski
, “Fluctuations of the weakly interacting Bose–Einstein condensate
,” Phys. Rev. Lett.
82
, 4376
–4379
(1999
).27.
F.
Illuminati
, P.
Navez
, and M.
Wilkens
, “Thermodynamic identities and particle number fluctuations in weakly interacting Bose–Einstein condensates
,” J. Phys. B
32
, L461
–L464
(1999
).28.
D. ter Haar, Elements of Statistical Mechanics (Rinehart, New York, 1954).
29.
F. C.
Auluck
and D. S.
Kothari
, “Statistical mechanics and the partitions of numbers
,” Proc. Cambridge Philos. Soc.
42
, 272
–277
(1946
).30.
H. N. V.
Temperley
, “Statistical mechanics and the partition of numbers I. The transition of liquid helium
,” Proc. R. Soc. London, Ser. A
199
, 361
–375
(1949
).31.
V. S.
Nanda
, “Bose–Einstein condensation and the partition theory of numbers
,” Proc. Natl. Inst. Sci. (India)
19
, 681
–690
(1953
).32.
K.
Schönhammer
and V.
Meden
, “Fermion-boson transmutation and comparison of statistical ensembles in one dimension
,” Am. J. Phys.
64
, 1168
–1176
(1996
).33.
G. E. Andrews, The Theory of Partitions (Addison-Wesley, Reading, MA, 1976).
34.
F.
Brosens
, J. T.
Devreese
, and L. F.
Lemmens
, “Canonical Bose–Einstein condensation in a parabolic well
,” Solid State Commun.
100
, 123
–127
(1996
).35.
F.
Brosens
, J. T.
Devreese
, and L. F.
Lemmens
, “Thermodynamics of coupled identical oscillators within the path-integral formalism
,” Phys. Rev. E
55
, 227
–236
(1997
).36.
K. C.
Chase
, A. Z.
Mekjian
, and L.
Zamick
, “Canonical and microcanonical ensemble approaches to Bose–Einstein condensation: The thermodynamics of particles in harmonic traps
,” Eur. Phys. J. B
8
, 281
–285
(1999
).37.
M.
Toda
, “On the relation between Fermions and Bosons
,” J. Phys. Soc. Jpn.
7
, 230
(1952
).38.
K.
Schönhammer
, “Thermodynamics and occupation numbers of a Fermi gas in the canonical ensemble
,” Am. J. Phys.
68
, 1032
–1037
(2000
).39.
R. M.
May
, “Quantum statistics of ideal gases in two dimensions
,” Phys. Rev.
135
, A1515
–A1518
(1964
).40.
R.
Aldrovandi
, “Two-dimensional quantum gases
,” Fortschr. Phys.
40
, 631
–649
(1992
).41.
S.
Viefers
, F.
Ravndal
, and T.
Haugset
, “Ideal quantum gases in two dimensions
,” Am. J. Phys.
63
, 369
–376
(1995
).42.
M.
Lee
, “Equivalence of ideal gases in two dimensions and Landen’s relations
,” Phys. Rev. E
55
, 1518
–1520
(1997
).43.
H.
Schmidt
, “A simple derivation of distribution functions for Bose and Fermi statistics
,” Am. J. Phys.
57
, 1150
–1151
(1989
).44.
T.
Sakai
, “Gibbs’ canonical ensemble and the distribution law in statistical mechanics
,” Proc. Phys. Math. Soc. Jpn.
22
, 193
–207
(1940
).45.
F.
Ansbacher
and W.
Ehrenberg
, “The derivation of statistical expressions from Gibbs’ canonical ensemble
,” Philos. Mag.
40
, 626
–631
(1949
).46.
P. T. Landsberg, Thermodynamics (Interscience, New York, 1961).
47.
F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, New York, 1965). Section 9.3 presents a somewhat similar derivation of the distribution functions via the canonical ensemble.
48.
P.
Borrmann
and G.
Franke
, “Recursion formulas for quantum statistical partition functions
,” J. Chem. Phys.
98
, 2484
–2485
(1993
).49.
J.
Tempere
and J. T.
Devreese
, “Canonical Bose–Einstein condensation of interacting bosons in two dimensions
,” Solid State Commun.
101
, 657
–659
(1997
).50.
F.
Brosens
, J. T.
Devreese
, and L. F.
Lemmens
, “Correlations in a confined gas of harmonically interacting spin-polarized fermions
,” Phys. Rev. E
58
, 1634
–1643
(1998
).51.
B. Eckhardt, “Eigenvalue statistics in quantum ideal gases,” in Emerging Applications in Number Theory, edited by D. Hejkal et al. (Springer, New York, 1997), pp. 187–199.
52.
P.
Borrmann
, J.
Hartig
, O.
Mülken
, and E. R.
Hilf
, “Calculation of thermodynamic properties of finite Bose–Einstein systems
,” Phys. Rev. A
60
, 1519
–1521
(1999
).53.
M.
Holzmann
and W.
Krauth
, “Transition temperature of the homogeneous weakly interacting Bose gas
,” Phys. Rev. Lett.
83
, 2687
–2690
(1999
).54.
S.
Pratt
, “Canonical and microcanonical calculations for Fermi systems
,” Phys. Rev. Lett.
84
, 4255
–4259
(2000
).55.
F.
Philippe
, J.
Arnaud
, and L.
Chusseau
, “Statistics of non-interacting bosons and fermions in microcanonical, canonical, and grand-canonical ensembles: A survey
,” math-ph/0211029.56.
D. I.
Ford
, “A note on the partition function for systems of independent particles
,” Am. J. Phys.
39
, 215
–230
(1971
).57.
H.-J.
Schmidt
and J.
Schnack
, “Partition functions and symmetric polynomials
,” Am. J. Phys.
70
, 53
–57
(2002
);58.
T.
Matsubara
, “Quantum-statistical theory of liquid Helium
,” Prog. Theor. Phys.
6
, 714
–730
(1951
).59.
W. J.
Mullin
, “The loop-gas approach to Bose–Einstein condensation for trapped particles
,” Am. J. Phys.
68
, 120
–128
(2000
);W. J.
Mullin
, “Permutation cycles in the Bose–Einstein condensation of a trapped gas
,” Physica B
284–288
, 7
–8
(2000
).60.
P.
Grüter
, D. M.
Ceperley
, and F.
Laloë
, “Critical temperature of Bose–Einstein condensation of hard-sphere gases
,” Phys. Rev. Lett.
79
, 3549
–3552
(1997
).61.
M.
Holzmann
, P.
Grüter
, and F.
Laloë
, “Bose–Einstein condensation in interacting gases
,” Eur. Phys. J. B
10
, 739
–760
(1999
).62.
W.
Krauth
, “Quantum Monte Carlo calculations for a large number of bosons in a harmonic trap
,” Phys. Rev. Lett.
77
, 3695
–3698
(1996
).63.
S.
Heinrichs
and W. J.
Mullin
, “Quantum Monte Carlo calculations for bosons in a two-dimensional harmonic trap
,” J. Low Temp. Phys.
113
, 231
–236
(1998
);64.
W. J.
Mullin
, S.
Heinrichs
, and J. P.
Fernández
, “The condensate number in PIMC treatments of trapped bosons
,” Physica B
284–288
, 9
–10
(2000
).
This content is only available via PDF.
© 2003 American Association of Physics Teachers.
2003
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.