We present three methods for calculating the Feynman propagator for the nonrelativistic harmonic oscillator. The first method was employed by Schwinger a half a century ago, but has rarely been used in nonrelativistic problems since. Also discussed is an algebraic method and a path integral method so that the reader can compare the advantages and disadvantages of each method.

1.
B. R.
Holstein
, “
The harmonic oscillator propagator
,”
Am. J. Phys.
66
,
583
589
(
1998
).
2.
F. A.
Barone
and
C.
Farina
, “
The zeta function method and the harmonic oscillator propagator
,”
Am. J. Phys.
69
,
232
235
(
2001
).
3.
J.
Schwinger
, “
Gauge invariance and vacuum polarization
,”
Phys. Rev.
82
,
664
679
(
1951
).
4.
R. M.
Wilcox
, “
Exponential operators and parameter differentiation in quantum physics
,”
J. Math. Phys.
8
,
962
982
(
1967
).
5.
E. Merzbacher, Quantum Mechanics (Wiley, New York, 1970), 2nd ed.
6.
Wang
Qinmou
, “
Algebraic structure and kernel of the Schródinger equation
,”
J. Phys. A
20
,
5041
5044
(
1987
).
7.
Katsumi
Yonei
, “
An operator method of evaluating the Bloch density matrix for an oscillator in a constant magnetic field
,”
J. Phys. A
22
,
2415
2426
(
1989
).
8.
A. Inomata, H. Kuratsuji, and C. C. Gerry, Path Integral and Coherent States of SU(2) and SU(1,1) (World Scientific, Singapore, 1992).
9.
V. V.
Dodonov
,
I. A.
Malkin
, and
V. I.
Man’ko
, “
Invariants and Green’s functions of a relativistic charged particle in electromagnetic fields
,”
Lett. Nuovo Cimento Soc. Ital. Fis.
14
,
241
244
(
1975
).
10.
V. V.
Dodonov
,
I. A.
Malkin
, and
V. I.
Man’ko
, “
Coherent states and Green’s functions of relativistic quadratic systems
,”
Physica A
82
,
113
133
(
1976
).
11.
V. V.
Dodonov
,
I. A.
Malkin
, and
V. I.
Man’ko
, “
Green’s functions for relativistic particles in non-uniform external fields
,”
J. Phys. A
9
,
1791
1796
(
1976
).
12.
J. D.
Likken
,
J.
Sonnenschein
, and
N.
Weiss
, “
The theory of anyonic superconductivity: A review
,”
Int. J. Mod. Phys. A
6
,
5155
5214
(
1991
).
13.
H.
Boschi-Filho
,
C.
Farina
, and
A. N.
Vaidya
, “
Schwinger’s method for the electron propagator in a plane wave field revisited
,”
Phys. Lett. A
215
,
109
112
(
1996
).
14.
J. Schwinger, Quantum Mechanics: Symbolism of Atomic Measurements, edited by B. G. Englert (Springer, New York, 2001).
15.
N. J.
Morgenstern Horing
,
H. L.
Cui
, and
G.
Fiorenza
, “
Nonrelativistic Schrödinger Green’s function for crossed time-dependent electric and magnetic fields
,”
Phys. Rev. A
34
,
612
615
(
1986
).
16.
C.
Farina
and
Antonio
Segui-Santonja
, “
Schwinger’s method for a harmonic oscillator with a time-dependent frequency
,”
Phys. Lett. A
184
,
23
28
(
1993
).
17.
S.
Rabello
and
C.
Farina
, “
Gauge invariance and the path integral
,”
Phys. Rev. A
51
,
2614
2615
(
1995
).
18.
A. O. Barut, Dynamical Groups and Generalized Symmetries in Quantum Theory (University of Canterbury Publications, Christchurch, NZ, 1972).
19.
B. G. Wybourne, Classical Groups for Physicists (Wiley, New York, 1974).
20.
R. Gilmore, Lie Groups, Lie Algebras and Some of Their Applications (Wiley, New York, 1974).
21.
D. R.
Truax
, “
Baker–Campbell–Hausdorff relations and unitarity of SU(2) and SU(1,1) squeeze operators
,”
Phys. Rev. D
31
,
1988
1991
(
1985
).
22.
A. I.
Milshtein
and
V. M.
Strakhovenko
, “
The O(2,1) algebra and the electron Green-function in a Coulomb field
,”
Phys. Lett. A
90
,
447
450
(
1982
).
23.
A. N.
Vaidya
and
H.
Boschi-Filho
, “
Algebraic calculation of the Green function for the Hartmann potential
,”
J. Math. Phys.
31
,
1951
1954
(
1990
).
24.
H.
Boschi-Filho
and
A. N.
Vaidya
, “
Algebraic solution of an anisotropic ring-shaped oscillator
,”
Phys. Lett. A
145
,
69
73
(
1990
);
H.
Boschi-Filho
and
A. N.
Vaidya
, “
Algebraic solution of an anisotropic nonquadratic potential
,”
Phys. Lett. A
149
,
336
340
(
1990
);
H.
Boschi-Filho
and
A. N.
Vaidya
, “
Green’s functions through so(2,1) Lie algebra in nonrelativistic quantum mechanics
,”
Ann. Phys. (Leipzig)
212
,
1
27
(
1991
).
25.
H.
Boschi-Filho
,
M.
de Souza
, and
A. N.
Vaidya
, “
General potentials described by so(2,1) dynamical algebra in parabolic coordinate systems
,”
J. Phys. A
24
,
4981
4988
(
1991
).
26.
A.
de Souza Dutra
and
H.
Boschi-Filho
, “
Dynamical algebra of quasi-exactly-solvable potentials
,”
Phys. Rev. A
44
,
4721
4724
(
1991
);
A.
de Souza Dutra
and
H.
Boschi-Filho
, “
so(2,1) Lie algebra and the Green’s functions for the conditionally exactly solvable potentials
,”
Phys. Rev. A
50
,
2915
2920
(
1994
).
27.
H.
Boschi-Filho
and
A. N.
Vaidya
, “
SO(2,1) coherent-state Green function for the Klein-Gordon Coulomb problem
,”
J. Phys. A
24
,
4981
4988
(
1991
).
28.
R. P.
Feynman
, “
Space-time approach to nonrelativistic quantum mechanics
,”
Rev. Mod. Phys.
20
,
367
387
(
1948
).
29.
P. A. M.
Dirac
, “
The Lagrangian in quantum mechanics
,”
Phys. Z. Sowjetunion
3
,
64
72
(
1933
).
Reprinted in Selected Papers on Quantum Electrodynamics, edited by J. Schwinger (Dover, New York, 1958), pp. 312–320;
P. A. M. Dirac, The Principles of Quantum Mechanics (Clarendon, Oxford, 1935).
30.
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw–Hill, New York, 1965).
31.
L. S. Schulman, Techniques and Applications of Path Integrations (Wiley, New York, 1981).
32.
D. C. Khandekar, S. V. Lawande, and K. V. Bhagwat, Path-Integral Methods and Their Applications (World Scientific, Singapore, 1993).
33.
Hagen Kleinert, Path Integrals in Quantum Mechanics Statistics and Polymer Physics (World Scientific, Singapore, 1995).
34.
C. Grosche and F. Steiner, Handbook of Feynman Path Integrals (Springer-Verlag, Berlin, 1997).
35.
Daniel J. Amit, Field Theory, the Renormalization Group, and Critical Phenomena (World Scientific, Singapore, 1984), 2nd rev. ed.
36.
H. M. Fried, Functional Methods and Models in Quantum Electrodynamics (MIT, Cambridge, MA, 1972).
37.
R. J. Rivers, Path Integral Methods in Quantum Field Theory (Cambridge U. P., Cambridge, 1987).
38.
Ashok Das, Field Theory: A Path Integral Approach (World Scientific, Singapore, 1993).
39.
Claude Itzyckson and Jean-Bernard Zuber, Quantum Field Theory (McGraw–Hill, New York, 1980).
40.
J. F.
Donoghue
and
B. R.
Holstein
, “
The harmonic oscillator via functional techniques
,”
Am. J. Phys.
56
,
216
222
(
1988
).
41.
George Arfken, Mathematical Methods for Physicists (Academic, New York, 1970).
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.