We present three methods for calculating the Feynman propagator for the nonrelativistic harmonic oscillator. The first method was employed by Schwinger a half a century ago, but has rarely been used in nonrelativistic problems since. Also discussed is an algebraic method and a path integral method so that the reader can compare the advantages and disadvantages of each method.
REFERENCES
1.
B. R.
Holstein
, “The harmonic oscillator propagator
,” Am. J. Phys.
66
, 583
–589
(1998
).2.
F. A.
Barone
and C.
Farina
, “The zeta function method and the harmonic oscillator propagator
,” Am. J. Phys.
69
, 232
–235
(2001
).3.
J.
Schwinger
, “Gauge invariance and vacuum polarization
,” Phys. Rev.
82
, 664
–679
(1951
).4.
R. M.
Wilcox
, “Exponential operators and parameter differentiation in quantum physics
,” J. Math. Phys.
8
, 962
–982
(1967
).5.
E. Merzbacher, Quantum Mechanics (Wiley, New York, 1970), 2nd ed.
6.
Wang
Qinmou
, “Algebraic structure and kernel of the Schródinger equation
,” J. Phys. A
20
, 5041
–5044
(1987
).7.
Katsumi
Yonei
, “An operator method of evaluating the Bloch density matrix for an oscillator in a constant magnetic field
,” J. Phys. A
22
, 2415
–2426
(1989
).8.
A. Inomata, H. Kuratsuji, and C. C. Gerry, Path Integral and Coherent States of SU(2) and SU(1,1) (World Scientific, Singapore, 1992).
9.
V. V.
Dodonov
, I. A.
Malkin
, and V. I.
Man’ko
, “Invariants and Green’s functions of a relativistic charged particle in electromagnetic fields
,” Lett. Nuovo Cimento Soc. Ital. Fis.
14
, 241
–244
(1975
).10.
V. V.
Dodonov
, I. A.
Malkin
, and V. I.
Man’ko
, “Coherent states and Green’s functions of relativistic quadratic systems
,” Physica A
82
, 113
–133
(1976
).11.
V. V.
Dodonov
, I. A.
Malkin
, and V. I.
Man’ko
, “Green’s functions for relativistic particles in non-uniform external fields
,” J. Phys. A
9
, 1791
–1796
(1976
).12.
J. D.
Likken
, J.
Sonnenschein
, and N.
Weiss
, “The theory of anyonic superconductivity: A review
,” Int. J. Mod. Phys. A
6
, 5155
–5214
(1991
).13.
H.
Boschi-Filho
, C.
Farina
, and A. N.
Vaidya
, “Schwinger’s method for the electron propagator in a plane wave field revisited
,” Phys. Lett. A
215
, 109
–112
(1996
).14.
J. Schwinger, Quantum Mechanics: Symbolism of Atomic Measurements, edited by B. G. Englert (Springer, New York, 2001).
15.
N. J.
Morgenstern Horing
, H. L.
Cui
, and G.
Fiorenza
, “Nonrelativistic Schrödinger Green’s function for crossed time-dependent electric and magnetic fields
,” Phys. Rev. A
34
, 612
–615
(1986
).16.
C.
Farina
and Antonio
Segui-Santonja
, “Schwinger’s method for a harmonic oscillator with a time-dependent frequency
,” Phys. Lett. A
184
, 23
–28
(1993
).17.
S.
Rabello
and C.
Farina
, “Gauge invariance and the path integral
,” Phys. Rev. A
51
, 2614
–2615
(1995
).18.
A. O. Barut, Dynamical Groups and Generalized Symmetries in Quantum Theory (University of Canterbury Publications, Christchurch, NZ, 1972).
19.
B. G. Wybourne, Classical Groups for Physicists (Wiley, New York, 1974).
20.
R. Gilmore, Lie Groups, Lie Algebras and Some of Their Applications (Wiley, New York, 1974).
21.
D. R.
Truax
, “Baker–Campbell–Hausdorff relations and unitarity of SU(2) and SU(1,1) squeeze operators
,” Phys. Rev. D
31
, 1988
–1991
(1985
).22.
A. I.
Milshtein
and V. M.
Strakhovenko
, “The O(2,1) algebra and the electron Green-function in a Coulomb field
,” Phys. Lett. A
90
, 447
–450
(1982
).23.
A. N.
Vaidya
and H.
Boschi-Filho
, “Algebraic calculation of the Green function for the Hartmann potential
,” J. Math. Phys.
31
, 1951
–1954
(1990
).24.
H.
Boschi-Filho
and A. N.
Vaidya
, “Algebraic solution of an anisotropic ring-shaped oscillator
,” Phys. Lett. A
145
, 69
–73
(1990
);H.
Boschi-Filho
and A. N.
Vaidya
, “Algebraic solution of an anisotropic nonquadratic potential
,” Phys. Lett. A
149
, 336
–340
(1990
);H.
Boschi-Filho
and A. N.
Vaidya
, “Green’s functions through so(2,1) Lie algebra in nonrelativistic quantum mechanics
,” Ann. Phys. (Leipzig)
212
, 1
–27
(1991
).25.
H.
Boschi-Filho
, M.
de Souza
, and A. N.
Vaidya
, “General potentials described by so(2,1) dynamical algebra in parabolic coordinate systems
,” J. Phys. A
24
, 4981
–4988
(1991
).26.
A.
de Souza Dutra
and H.
Boschi-Filho
, “Dynamical algebra of quasi-exactly-solvable potentials
,” Phys. Rev. A
44
, 4721
–4724
(1991
);A.
de Souza Dutra
and H.
Boschi-Filho
, “so(2,1) Lie algebra and the Green’s functions for the conditionally exactly solvable potentials
,” Phys. Rev. A
50
, 2915
–2920
(1994
).27.
H.
Boschi-Filho
and A. N.
Vaidya
, “SO(2,1) coherent-state Green function for the Klein-Gordon Coulomb problem
,” J. Phys. A
24
, 4981
–4988
(1991
).28.
R. P.
Feynman
, “Space-time approach to nonrelativistic quantum mechanics
,” Rev. Mod. Phys.
20
, 367
–387
(1948
).29.
P. A. M.
Dirac
, “The Lagrangian in quantum mechanics
,” Phys. Z. Sowjetunion
3
, 64
–72
(1933
).Reprinted in Selected Papers on Quantum Electrodynamics, edited by J. Schwinger (Dover, New York, 1958), pp. 312–320;
P. A. M. Dirac, The Principles of Quantum Mechanics (Clarendon, Oxford, 1935).
30.
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw–Hill, New York, 1965).
31.
L. S. Schulman, Techniques and Applications of Path Integrations (Wiley, New York, 1981).
32.
D. C. Khandekar, S. V. Lawande, and K. V. Bhagwat, Path-Integral Methods and Their Applications (World Scientific, Singapore, 1993).
33.
Hagen Kleinert, Path Integrals in Quantum Mechanics Statistics and Polymer Physics (World Scientific, Singapore, 1995).
34.
C. Grosche and F. Steiner, Handbook of Feynman Path Integrals (Springer-Verlag, Berlin, 1997).
35.
Daniel J. Amit, Field Theory, the Renormalization Group, and Critical Phenomena (World Scientific, Singapore, 1984), 2nd rev. ed.
36.
H. M. Fried, Functional Methods and Models in Quantum Electrodynamics (MIT, Cambridge, MA, 1972).
37.
R. J. Rivers, Path Integral Methods in Quantum Field Theory (Cambridge U. P., Cambridge, 1987).
38.
Ashok Das, Field Theory: A Path Integral Approach (World Scientific, Singapore, 1993).
39.
Claude Itzyckson and Jean-Bernard Zuber, Quantum Field Theory (McGraw–Hill, New York, 1980).
40.
J. F.
Donoghue
and B. R.
Holstein
, “The harmonic oscillator via functional techniques
,” Am. J. Phys.
56
, 216
–222
(1988
).41.
George Arfken, Mathematical Methods for Physicists (Academic, New York, 1970).
This content is only available via PDF.
© 2003 American Association of Physics Teachers.
2003
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.