Wave–particle duality is frequently the first topic students encounter in elementary quantum physics. Although this phenomenon has been demonstrated with photons, electrons, neutrons, and atoms, the dual quantum character of the famous double-slit experiment can be best explained with the largest and most classical objects, which are currently the fullerene molecules. The soccer-ball-shaped carbon cages C60 are large, massive, and appealing objects for which it is clear that they must behave like particles under ordinary circumstances. We present the results of a multislit diffraction experiment with such objects to demonstrate their wave nature. The experiment serves as the basis for a discussion of several quantum concepts such as coherence, randomness, complementarity, and wave–particle duality. In particular, the effect of longitudinal (spectral) coherence can be demonstrated by a direct comparison of interferograms obtained with a thermal beam and a velocity selected beam in close analogy to the usual two-slit experiments using light.

1.
M.
Planck
, “
Zur Theorie des Gesetzes der Energieverteilung im Normalenspektrum
,”
Verh. Dtsch. Phys. Ges.
2
,
237
(
1900
);
English translation: “
On the theory of the energy distribution law of the normal spectrum,” in The Old Quantum Theory, edited by D. ter Haar (Pergamon, New York, 1967), p. 82.
2.
P.
Lenard
, “
Über die lichtelektrische Wirkung
,”
Ann. Phys. (Leipzig)
8
,
149
198
(
1902
).
3.
A.
Einstein
, “
Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt
,”
Ann. Phys. (Leipzig)
17
,
132
148
(
1905
);
English translation:
A.
Arons
and
M.
Peppard
, “
Concerning an heuristic point of view toward the emission and transformation of light
,”
Am. J. Phys.
33
,
367
374
(
1965
).
4.
L.
de Broglie
, “
Waves and quanta
,”
Nature (London)
112
,
540
540
(
1923
).
5.
C.
Davisson
and
L.
Germer
, “
The scattering of electrons by a single crystal of nickel
,”
Nature (London)
119
,
558
560
(
1927
).
6.
A student, having been taught some elementary statistical physics, would be tempted to answer the second one by analogy with the Galton board. Also there, the trajectory of the single particle appears to be undetermined and still the count rate in each channel would be in agreement with the deterministic laws of classical statistics. But we should note, first of all, that the apparent randomness in this example is only due to the ill-defined initial conditions when we release the ball. Second, if we were to perform such a Galton experiment with two different starting positions, the probability distributions of these experiments would simply add up and interference would never be observed.
7.
C.
Brukner
and
A.
Zeilinger
, “
Young’s experiment and the finiteness of information
,”
Philos. Trans. R. Soc. London, Ser. A
360
,
1061
1069
(
2002
).
8.
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).
9.
I.
Estermann
and
O.
Stern
, “
Beugung von Molekularstrahlen
,”
Z. Phys.
61
,
95
125
(
1930
).
10.
H. v.
Halban Jnr.
and
P.
Preiswerk
, “Preuve Expérimentale de la Diffraction Des Neutrons,” C. R. Acad. Sci. Paris 203, 73–75 (1936).
11.
R.
Gähler
and
A.
Zeilinger
, “
Wave-optical experiments with very cold neutrons
,”
Am. J. Phys.
59
,
316
324
(
1991
).
12.
C.
Jönsson
, “
Electron diffraction at multiple slits
,”
Am. J. Phys.
42
,
4
11
(
1974
).
13.
A.
Zeilinger
,
R.
Gähler
,
C. G.
Shull
,
W.
Treimer
, and
W.
Mampe
, “
Single- and double-dlit diffraction of neutrons
,”
Rev. Mod. Phys.
60
,
1067
1073
(
1988
).
14.
O.
Carnal
and
J.
Mlynek
, “
Young’s double-slit experiment with atoms: A simple atom interferometer
,”
Phys. Rev. Lett.
66
,
2689
2692
(
1991
).
15.
W.
Schöllkopf
and
J. P.
Toennies
, “
Nondestructive mass selection of small van der Waals clusters
,”
Science
266
,
1345
1348
(
1994
).
16.
W.
Schöllkopf
and
J.
Toennies
, “
The nondestructive detection of the Helium dimer and trimer
,”
J. Chem. Phys.
104
,
1155
1158
(
1996
).
17.
T. W.
Hänsch
and
A. L.
Schawlow
, “
Cooling of gases by laser radiation
,”
Opt. Commun.
13
,
68
69
(
1975
).
18.
D.
Wineland
and
H.
Dehmelt
, “
Proposed 1014Δν<ν laser fluorescence spectroscopy on Tl+ mono-ion oscillator III (side band cooling)
,”
Bull. Am. Phys. Soc.
20
,
637
637
(
1975
).
19.
S.
Chu
, “
The manipulation of neutral particles
,”
Rev. Mod. Phys.
70
,
685
706
(
1998
).
20.
C. N.
Cohen-Tannoudji
, “
Manipulating atoms with photons
,”
Rev. Mod. Phys.
70
,
707
719
(
1998
).
21.
W. D.
Phillips
, “
Laser cooling and trapping of neutral atoms
,”
Rev. Mod. Phys.
70
,
721
741
(
1998
).
22.
M. H.
Anderson
,
J. R.
Ensher
,
M. R.
Matthews
,
C. E.
Wieman
, and
E. A.
Cornell
, “
Observation of Bose–Einstein condensation in a dilute atomic vapor
,”
Science
269
,
198
201
(
1995
).
23.
K. B.
Davis
,
M.-O.
Mewes
,
M. R.
Andrews
,
N. J.
van Druten
,
D. S.
Durfee
,
D. M.
Kurn
, and
W.
Ketterle
, “
Bose–Einstein condensation in a gas of Sodium atoms
,”
Phys. Rev. Lett.
75
,
3969
3973
(
1995
).
24.
M. R.
Andrews
,
C.
Townsend
,
H.
Miesner
,
D.
Durfee
,
D.
Kurn
, and
W.
Ketterle
, “
Observation of interference between two Bose condensates
,”
Science
275
,
637
641
(
1997
).
25.
C.
Bordé
,
N.
Courtier
,
F. D.
Burck
,
A.
Goncharov
, and
M.
Gorlicki
, “
Molecular interferometry experiments
,”
Phys. Lett. A
188
,
187
197
(
1994
).
26.
C.
Lisdat
,
M.
Frank
,
H.
Knockel
,
M.-L.
Almazor
, and
E.
Tiemann
, “
Realization of a Ramsey–Bordé matter wave interferometer on the K2 molecule
,”
Eur. Phys. J. D
12
,
235
240
(
2000
).
27.
M. S.
Chapman
,
C. R.
Ekstrom
,
T. D.
Hammond
,
R. A.
Rubenstein
,
J.
Schmiedmayer
,
S.
Wehinger
, and
D. E.
Pritchard
, “
Optics and interferometry with Na2 molecules
,”
Phys. Rev. Lett.
74
,
4783
4786
(
1995
).
28.
See comment by J. Clauser in Atom Interferometry, edited by P. R. Berman (Academic, New York, 1997), p. 143.
29.
R. E.
Grisenti
,
W.
Schollkopf
,
J. P.
Toennies
,
G. C.
Hegerfeldt
,
T.
Kohler
, and
M.
Stoll
, “
Determination of the bond length and binding energy of the Helium dimer by diffraction from a transmission grating
,”
Phys. Rev. Lett.
85
,
2284
2287
(
2000
).
30.
L. Saffaro, “Cosmoids, fullerenes and continuous polygons,” in Proceedings of the First Italian Workshop on Fullerenes: Status and Perspectives, edited by C. Taliani, G. Ruani, and R. Zamboni (World Scientific, Singapore, 1992), Vol. 2, p. 55.
31.
R. W. Marks, The Dymaxion World of Buckminster Fuller (Southern Illinois U.P., Carbondale, 1960).
32.
H.
Kroto
,
J.
Heath
,
S.
O’Brian
,
R.
Curl
, and
R.
Smalley
, “
C60: Buckminsterfullerene
,”
Nature (London)
318
,
162
166
(
1985
).
33.
It is interesting to compare the de Broglie wavelength of the fullerene with its actual size: The buckyball has a diameter of about 1 nm, which is 350 times larger than its de Broglie wavelength. Our interference experiments clearly show that the concept of the de Broglie wavelength is not merely academic for objects with dimensions much larger than their wavelengths but can actually be demonstrated.
34.
Our gratings were provided by Professor Henry Smith and Dr. Tim Savas of MIT.
35.
M.
Arndt
,
O.
Nairz
,
J.
Voss-Andreae
,
C.
Keller
,
G.
van der Zouw
, and
A.
Zeilinger
, “
Wave-particle duality of C60 molecules
,”
Nature (London)
401
,
680
682
(
1999
);
O.
Nairz
,
M.
Arndt
, and
A.
Zeilinger
, “
Experimental challenges in fullerene interferometry
,”
J. Mod. Opt.
47
,
2811
2821
(
2000
).
36.
For the original work see
P. V.
Cittert
, “
Die wahrscheinliche Schwingungsverteilung in einer von einer Lichtquelle direkt oder mittels einer Linse beleuchteten Ebene
,”
Physica (Amsterdam)
1
,
201
210
(
1934
), and
F.
Zernike
, “
The concept of degree of coherence and its application to optical problems
,”
Physica (Amsterdam)
5
,
785
795
(
1938
).
A textbook with a detailed account of the theorem is M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1993).
37.
L. Bergmann and C. Schaefer, Optics: Of Waves and Particles (de Gruyter, New York, 1999).
38.
E. Hecht, Optics (Addison-Wesley, Reading, MA, 2002), 4th ed.
39.
This effect has also been described in the context of He diffraction in
R. E.
Grisenti
,
W.
Schöllkopf
,
J. P.
Toennies
,
G. C.
Hegerfeldt
, and
T.
Köhler
, “
Determination of atom-surface van der Waals potentials from transmission-grating diffraction intensities
,”
Phys. Rev. Lett.
83
,
1755
1758
(
1999
).
40.
The van der Waals interaction scales like r−3 with the distance r between molecule and grating walls. For C60 the scaling even starts to change into a r−4 behavior at distances beyond 20 nm, due to the finite (retarded) signaling time between the molecule and its mirror image;
see also
H. B. G.
Casimir
and
D.
Polder
, “
The influence of retardation on the London-van der Waals forces
,”
Phys. Rev.
73
,
360
372
(
1948
).
41.
R.
Mitzner
and
E. E. B.
Campbell
, “
Optical emission studies of laser desorbed C60,
J. Chem. Phys.
103
,
2445
2453
(
1995
).
42.
K.
Hansen
and
E.
Campbell
, “
Thermal radiation from small particles
,”
Phys. Rev. E
58
,
5477
5482
(
1998
).
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.