A variational R-matrix method for solving the one-dimensional time-independent Schrödinger equation is presented. The theory is simple and general and applies to an arbitrary potential. As an example, the method is applied to the pedagogically important problem of quantum tunneling through a barrier. Accurate transmission and reflection coefficients are obtained by the variational R-matrix method which compare favorably with the known analytical solutions.

1.
H.
Ness
and
A. J.
Fisher
, “
Dynamical effective potential for tunneling: an exact method and a path-integral technique
,”
Appl. Phys. A: Mater. Sci. Process.
66
,
S919
S923
(
1998
);
Y.
Ko
,
M.
Shin
, J. S. Ha, and
K. W.
Park
, “
Green-function calculations of coherent electron transport in a gated Si nanowire
,”
ET J.
22
,
19
26
(
2000
);
M.
Tsukada
,
N.
Kobayashi
,
M.
Brandbyge
, and
S.
Nakanishi
, “
Physics of artificial nano-structures on surfaces
,”
Prog. Surf. Sci.
64
,
139
155
(
2000
);
I. P.
Batra
,
P.
Sen
, and
S.
Ciraci
, “
Quantum transport through one-dimensional aluminium wires
,”
J. Vac. Sci. Technol. B
20
,
812
817
(
2002
).
2.
V. E.
Barlette
,
M. M.
Leite
, and
S. K.
Adhikari
, “
Integral equations of scattering in one dimension
,”
Am. J. Phys.
69
,
1110
1113
(
2001
).
3.
E. P.
Wigner
and
L.
Eisenbud
, “
Higher angular momenta and long range interaction in resonance reactions
,”
Phys. Rev.
72
,
29
41
(
1947
).
See also the celebrated review by
A. M.
Lane
and
R. G.
Thomas
, “
R-matrix theory of nuclear reactions
,”
Rev. Mod. Phys.
30
,
257
353
(
1958
).
4.
P. G.
Burke
and
K.
Smith
, “
The low-energy scattering of electrons and positrons by hydrogen atoms
,”
Rev. Mod. Phys.
34
,
458
502
(
1962
).
B. I.
Schneider
and
P. J.
Hay
, “
Elastic scattering of electrons from F2: An R-matrix calculation
,”
Phys. Rev. A
13
,
2049
2056
(
1976
).
5.
L.
Smrcka
, “
R-matrix and the coherent transport in mesoscopic systems
,”
Superlattices Microstruct.
8
,
221
224
(
1990
).
6.
W.
Kohn
, “
Variational methods in nuclear collision problems
,”
Phys. Rev.
74
,
1763
1772
(
1948
).
7.
R. K. Nesbet, Variational Methods in Electron-Atom Scattering Theory (Plenum, New York, 1980).
8.
G. Raseev and H. Le Rouzo, “A continuum spectrum multichannel finite-volume variational method,” Proceedings of the XIII ICPEAC, Berlin, 1983, p. 36;
H.
Le Rouzo
and
G.
Raseev
, “
Finite-volume variational method: first application to direct molecular photoionisation
,”
Phys. Rev. A
29
,
1214
1223
(
1984
).
9.
C. H.
Greene
, “
Atomic photoionization in a strong magnetic field
,”
Phys. Rev. A
28
,
2209
2216
(
1983
).
10.
P. F.
O’Mahony
and
C. H.
Greene
, “
Doubly excited states of beryllium and magnesium
,”
Phys. Rev. A
31
,
250
259
(
1985
);
H.
Le Rouzo
, “
Role of bound eigenstates in theab initio calculation of continuum wave functions by Kohn’s finite-volume variational method
,”
Phys. Rev. A
32
,
650
652
(
1985
);
G.
Raseev
, “
Variational calculation of the logarithmic derivative of the wavefunction: the electronic autoionisation region in photoionisation ofH2,
J. Phys. B
18
,
423
439
(
1985
);
C. H.
Greene
and
L.
Kim
, “
Two-electron excitations in atomic calcium
,”
Phys. Rev. A
36
,
2706
2717
(
1987
);
C. H.
Greene
and
M.
Aymar
, “
Spin–orbit effects in the heavy alkaline-earth atoms
,”
Phys. Rev. A
44
,
1773
1790
(
1991
);
I.
Wilhelmy
,
L.
Ackermann
,
A.
Görling
, and
N.
Rösch
, “
Molecular photoionization cross sections by the Lobatto technique. I. Valence photoionization
,”
J. Chem. Phys.
100
,
2808
2820
(
1994
);
I.
Wilhelmy
and
N.
Rösch
, “
Molecular photoionization cross sections by the Lobatto technique. II. Core level photoionization
,”
Chem. Phys.
185
,
317
332
(
1994
).
11.
P.
Hamacher
and
J.
Hinze
, “
Finite-volume variational method for the Dirac equation
,”
Phys. Rev. A
44
,
1705
1711
(
1991
);
R.
Szmytkowski
, “
Variational R-matrix methods for many-electron systems: Unified relativistic theory
,”
Phys. Rev. A
63
,
062704
-
1
062704
-
14
(
2001
).
12.
T.
Pang
, “
A numerical method for quantum tunneling
,”
Comput. Phys.
9
,
602
605
(
1995
).
See also T. Pang, An Introduction to Computational Physics (Cambridge University Press, New York, 1997).
13.
L. Pauling and E. B. Wilson, Jr., Introduction to Quantum Mechanics with Applications to Chemistry (Dover, New York, 1963), p. 169, Eq. (24-15).
14.
A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1961), Vol. I.
15.
Because the time independent Schrödinger equation is homogeneous, if ψ is a solution, so is any multiple of ψ. As a consequence, we can choose the scale factor so that the incident wave exp(ik1x) has unit amplitude.
16.
P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), Part II, pp. 1650–1660.
17.
In atomic units: m=ℏ=|e|=1. Atomic units of length and energy are 1 bohr=0.529 177 Å and 1 hartree=27.211 65 eV, respectively.
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.