The results obtained by Pauli in his 1926 article on the hydrogen atom made essential use of the dynamical so(4) symmetry of the bound states. Pauli used this symmetry to calculate the perturbed energy levels of an hydrogen atom in a uniform electric field (Stark effect) and in uniform electric and magnetic fields. Although the Stark effect in hydrogen has been studied experimentally, Pauli’s results in mixed fields have been studied only for Rydberg states of rubidium atoms in crossed fields and for lithium atoms in parallel fields.

1.
E.
Schrödinger
, “
The non-relativistic equation of the de Broglie waves
,”
Ann. Phys. (N.Y.)
79
,
361
376
(
1926
).
2.
W.
Pauli
, “
On the hydrogen spectrum from the standpoint of the new quantum mechanics
,”
Z. Phys.
36
,
336
363
(
1926
). This article is reprinted in Ref. 3.
3.
B. L. Van der Waerden, Sources of Quantum Mechanics (Dover, New York, 1968).
4.
L. D. Landau and E. M. Lifschitz, Quantum Mechanics (Pergamon, New York, 1977).
5.
H.
Goldstein
, “
More on the prehistory of the Laplace or Runge-Lenz vector
,”
Am. J. Phys.
44
,
1123
1124
(
1976
).
6.
As is well known, this analysis is equivalent to solving the Schrödinger equation in parabolic coordinates.
7.
L. I. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1968).
8.
W. Greiner and B. Muller, Quantum Mechanics (Springer-Verlag, New York, 1994).
9.
D. Oliver, The Shaggy Steed of Physics (Springer-Verlag, New York, 1994).
10.
This is reminiscent of the calculation of the one-dimensional harmonic oscillator spectrum using creation and annihilation operators instead of solving Schrödinger equation by power series.
11.
H. G.
Becker
and
K.
Bleuler
, “
O(4)-Symmetrie und Stark-effekt des H Atoms
,”
Z. Naturforsch. A
31A
,
517
523
(
1976
).
12.
G.
Bonneau
,
J.
Faraut
, and
G.
Valent
, “
Self-adjoint extensions of operators and the teaching of quantum mechanics
,”
Am. J. Phys.
69
,
322
331
(
2001
).
13.
We point out that T⃗ is non-Hermitian because we have (T⃗)=T⃗−2iℏ R⃗.
14.
We should not use this relation for θ=0, because in this case we have ν⃗⋅I⃗=Iz and this operator is already diagonal. Similarly, for θ=π we have ν⃗⋅I⃗=−Iz.
15.
I.
Waller
, “
Der Starkeffekt zweiter Ordnung bei Wasserstoff und die Rydbergkorrektion der Spektra von He und Li+,
Z. Phys.
38
,
635
646
(
1926
).
16.
G.
Wentzel
, “
Eine Verallgemeinerung der Qunatenbedingungen für die Zwecke der Wellenmechanik
,”
Z. Phys.
38
,
518
529
(
1926
).
17.
P. S.
Epstein
, “
The Stark effect from the point of view of Schrödinger’s quantum theory
,”
Phys. Rev.
28
,
695
710
(
1926
).
18.
E.
Luc-Koenig
and
A.
Bachelier
, “
Systematic theoretic study of the Stark spectrum of atomic hydrogen I: density of continuum states
,”
J. Phys. D
13
,
1743
1767
(
1980
).
19.
F.
Penent
,
D.
Delande
,
F.
Biraben
, and
J. C.
Gay
, “
Rydberg atoms in crossed electric and magnetic fields. Experimental evidence for Pauli quantization
,”
Opt. Commun.
49
,
184
188
(
1984
).
20.
P.
Cacciani
,
E.
Luc-Koenig
,
J.
Pinard
,
C.
Thomas
, and
S.
Liberman
, “
Experimental study and analysis of the lithium atom in presence of parallel electric and magnetic fields
,”
Phys. Rev. Lett.
56
,
1467
1470
(
1986
).
21.
G.
Raithel
,
M.
Fauth
, and
H.
Walther
, “
Quasi-Landau resonances in the spectra of rubidium Rydberg atoms in crossed electric and magnetic fields
,”
Phys. Rev. A
44
,
1898
1909
(
1991
).
22.
E. A.
Solov’ev
, “
Second-order perturbation theory for a hydrogen atom in crossed electric and magnetic fields
,”
Sov. Phys. JETP
58
,
63
66
(
1983
).
23.
J.
Main
,
M.
Schwacke
, and
G.
Wunner
, “
Hydrogen atom in combined electric and magnetic fields with arbitrary mutual orientations
,”
Phys. Rev. A
57
,
1149
1157
(
1998
).
24.
J. L. Basdevant and J. Dalibard, The Quantum Mechanics Solver (Springer-Verlag, New York, 2000).
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.