Based on Jourdain’s variational equation proposed in 1909, we deduce a minimal set of general equations of motion for nonholomic dynamical systems of particles and rigid bodies. This equation of motion for the system, which differs slightly from the Gibbs–Appell equation, appears to be the same as the equation derived by Kane in 1961. Since the same equation was established by Appell in 1903 on the basis of D’Alembert’s principle, the newly derived equation is named Appell’s equation.

1.
E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (Cambridge U.P., Cambridge, 1904, 1937), 4th ed.
2.
L. A. Pars, A Treatise on Analytical Dynamics (Ox Bow, 1965).
3.
P. E. B.
Jourdain
, “
Note on an analogue of Gauss’ principle of least constraint
,”
Q. J. Pure Appl. Math.
8L
,
153
157
(
1909
).
4.
A. Budo, Theoretische Mechanik (Deutscher Verlag der Wissenschaften, Berlin, 1964).
5.
R. E. Roberson and R. Schwertassek, Dynamics of Multibody Systems (Springer-Verlag, Berlin, 1988).
6.
M. Lesser, The Analysis of Complex Nonlinear Mechanical Systems: A Computer Algebra Assisted Approach (World Scientific, Singapore, 1995).
7.
F. C. Moon, Applied Dynamics (Wiley, New York, 1998).
8.
T. R.
Kane
, “
Dynamics of nonholonomic systems
,”
J. Appl. Mech.
83
,
574
578
(
1961
).
9.
T. R.
Kane
, “
On the derivation of equations of motion
,”
J. Soc. Ind. Appl. Math.
13
(
2
),
487
492
(
1965
).
10.
T. R.
Kane
, “
Formulation of equations of motion for complex spacecraft
,”
J. Guid. Control
3
(
2
),
99
112
(
1980
).
11.
T. R.
Kane
, “
Formulation of dynamical equations of motion
,”
Am. J. Phys.
51
(
11
),
974
977
(
1983
).
12.
T. R. Kane and D. A. Levinson, Dynamics: Theory and Applications (McGraw–Hill, New York, 1985).
13.
E. A.
Desloge
, “
A comparison of Kane’s equations of motion and the Gibbs-Appell equations of motion
,”
Am. J. Phys.
54
(
5
),
470
472
(
1986
).
14.
B.
Chen
, “
On Kane’s equation” (in Chinese
),
Acta Mech. Sin.
16
(
3
),
311
315
(
1984
).
15.
B. Chen, Analytical Dynamics (in Chinese) (Peking U.P., Peking, 1987).
16.
P. E. B.
Jourdain
, “
On Gauss’ principle of least constraint and the equilibrium of mechanics
,”
Math. Gazette
2
(
41
),
337
340
(
1903
).
17.
P. E. B.
Jourdain
, “
On the general equations of mechanics
,”
Q. J. Math.
36
,
61
79
(
1905
).
18.
P. Appell, Traite de Mecanique Rationelle, Tome II (Gauthier-Villars et Cie, Editeurs, 1903), 2nd ed.
19.
I. Newton, Principia, translated and edited by F. Cajori from Philosophiae Naturalis Principia Mathematica (University of California Press, 1934). First published in 1687.
20.
E. Mach, The Science of Mechanics (Open Court, Chicago, IL, 1974), 6th ed. First published in 1893.
21.
J. L. Synge and B. A. Griffith, Principles of Mechanics (McGraw–Hill, New York, 1959), 3rd ed. First published in 1942.
22.
R. B. Lindsay and H. Margenau, Foundations of Physics (Dover, New York, 1957).
23.
J. W.
Gibbs
, “
On the fundamental formulae of dynamics
,”
Am. J. Phys.
2
,
49
64
(
1879
).
24.
P.
Appell
, “
Sur une forme générale deséquations de la dynamique
,”
J. Math.
CXXI
,
310
319
(
1899
).
25.
T. R. Kane, P. W. Likins, and D. A. Levinson, Spacecraft Dynamics (McGraw–Hill, New York, 1983).
26.
Mechanics and Control of Large Flexible Structures, edited by John L. Junkins (American Institute of Aeronautics and Astronautics, 1990).
27.
L.
Nordheim
, “
Die prinzipe der dynamik
,”
Handbuch der Physik
5
,
43
90
(
1927
).
28.
J. G.
Papastavridis
, “
On Jourdain’s principle
,”
Int. J. Eng. Sci.
30
(
2
),
135
140
(
1992
).
29.
E. J. Routh, Dynamics of Rigid Bodies (Macmillan, 1877).
30.
C. Lanczos, The Variational Principles of Mechanics (University of Toronto Press, Toronto, 1949), 2nd ed.
31.
J. Wittenburg, Dynamics of Systems of Rigid Bodies (Teubner, Stuttgart, 1977).
32.
W. O. Schiehlen, “Computer generation of equations of motion,” in Computer Aided Analysis and Optimization of Mechanical System Dynamics, edited by E. J. Haug (Springer-Verlag, Berlin, 1984), pp. 183–215.
33.
H.
Poincaré
, “
Sur une forme nouvelle des équations de la mécanique
,”
C. R. Acad. Sci.
132
,
369
371
(
1901
).
34.
J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry (Springer, New York, 1999), 2nd ed.
35.
R. Abraham and J. E. Marsden, Foundations of Mechanics (Benjamin/Cummings, Reading, MA, 1978), 2nd ed.
36.
D.
Scott
, “
Can a projection method of obtaining equations of motion compete with Lagrange’s equations?
,”
Am. J. Phys.
56
(
5
),
451
456
(
1988
).
37.
J.
Storch
and
S.
Gates
, “
Motivating Kane’s method for obtaining equations of motion for dynamic systems
,”
J. Guid. Control Dyn.
12
(
4
),
593
595
(
1989
).
38.
W.
Blajer
, “
A projection method approach to constrained dynamic analysis
,”
J. Appl. Mech.
59
,
643
649
(
1992
).
39.
T.
Kane
, “
Rebuttal to ‘A comparison of Kane’s equations of motion and the Gibbs-Appell equations of motion,’ 
Am. J. Phys.
54
(
5
),
472
(
1986
).
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.