We present detailed instructions for the construction of a pyramidal-style laser cooling and trapping apparatus. This scheme requires only a single beam, rather than the three pairs of orthogonal beams of the standard magneto-optical trap, which greatly simplifies the geometry and substantially reduces the cost. The trap is based largely on low-cost commercially available items and is simple to construct. It is remarkably insensitive to alignment and reliable to operate. Using a single laser beam with an intensity of 1.3 mW/cm2 we cool and trap more than 4 million rubidium atoms.

1.
Sarah L.
Gilbert
and
Carl E.
Wieman
, “
Laser cooling and trapping for the masses
,”
Opt. Photonics News
4
(
7
),
8
14
(
1993
).
2.
M. H.
Anderson
,
J. R.
Ensher
,
M. R.
Matthews
,
C. E.
Wieman
, and
E. A.
Cornell
, “
Observation of Bose–Einstein condensation in a dilute atomic vapor
,”
Science
269
,
198
201
(
1995
);
Isaac F.
Silvera
, “
Bose–Einstein condensation
,”
Am. J. Phys.
65
(
6
),
570
574
(
1997
).
3.
M.-O.
Mewes
,
M. R.
Andrews
,
D. M.
Kurn
,
D. S.
Durfee
,
C. G.
Townsend
, and
W.
Ketterle
, “
Output Coupler for Bose–Einstein Condensed Atoms
,”
Phys. Rev. Lett.
78
(
4
),
582
585
(
1997
);
Daniel Kleppner, “A beginner’s guide to the atom laser,” Phys. Today 11–13 (August, 1997).
4.
Proceedings of the International School of Physics “Enrico Fermi,” Course CXVIII, Laser Manipulation of Atoms and Ions, edited by E. Arimondo, W. D. Phillips, and F. Strumia (North-Holland, Amsterdam, 1992).
5.
The 1997 Physics Nobel Prize was awarded to Steven Chu, Claude Cohen-Tannoudji, and William D. Phillips, for development of methods to cool and trap atoms with laser light. The 2001 Physics Nobel Prize was awarded to Eric Cornell, Carl Wieman, and Wolfgang Ketterle, for the achievement of Bose–Einstein condensation in dilute gases of alkali atoms, and for early fundamental studies of the properties of the condensates.
6.
M. R.
Anderson
,
C. G.
Townsend
,
H.-J.
Miesner
,
D. S.
Durfee
,
D. M.
Kurn
, and
W.
Ketterle
, “
Observation of interference between two Bose condensates
,”
Science
275
,
637
641
(
1997
).
7.
L.
Deng
,
E. W.
Hagley
,
J.
Wen
,
M.
Trippenbach
,
Y.
Band
,
P. S.
Julienne
,
J. E.
Simsarian
,
K.
Helmerson
,
S. L.
Rolston
, and
W. D.
Phillips
, “
Four-wave mixing with matter waves
,”
Nature (London)
398
,
218
220
(
1999
).
8.
Elizabeth A.
Donley
,
Neil R.
Claussen
,
Simon L.
Cornish
,
Jacob L.
Roberts
,
Eric A.
Cornell
, and
Carl E.
Wieman
, “
Dynamics of collapsing and exploding Bose-Einstein condensates
,” eprint cond-mat/0105019
2001
.
9.
Carl
Wieman
,
Gwenn
Flowers
, and
Sarah
Gilbert
, “
Inexpensive laser cooling and trapping experiment for undergraduate laboratories
,”
Am. J. Phys.
63
(
4
),
317
330
(
1995
).
10.
K. B.
MacAdam
,
A.
Steinbach
, and
C.
Wieman
, “
A narrow-band tunable diode laser system with grating feedback and a saturated absorption spectrometer for Cs and Rb
,”
Am. J. Phys.
60
(
12
),
1098
1111
(
1992
).
11.
Paul
Feng
and
Thad
Walker
, “
Inexpensive diode laser microwave modulation for atom trapping
,”
Am. J. Phys.
63
,
905
908
(
1995
).
12.
Daryl W.
Preston
, “
Doppler-free saturated absorption: Laser spectroscopy
,”
Am. J. Phys.
64
(
11
),
1432
1436
(
1996
).
13.
Phillip
Gould
, “
Laser cooling of atoms to the Doppler limit
,”
Am. J. Phys.
65
(
11
),
1120
1123
(
1997
).
14.
Yukiko
Shimizu
and
Hiroyuki
Sasada
, “
Mechanical force in laser cooling and trapping
,”
Am. J. Phys.
66
(
11
),
960
967
(
1998
).
15.
K. I.
Lee
,
J. A.
Kim
,
H. R.
Noh
, and
W.
Jhe
, “
Single-beam atom trap in a pyramidal and conical hollow mirror
,”
Opt. Lett.
21
(
15
),
1177
1179
(
1996
);
J. A.
Kim
,
K. I.
Lee
,
H. R.
Noh
, and
W.
Jhe
, “
Atom trap in an axicon mirror
,”
Opt. Lett.
21
(
2
),
117
119
(
1997
).
16.
J. J.
Arlt
,
O.
Maragò
,
S.
Webster
,
S.
Hopkins
, and
C. J.
Foot
, “
A pyramidal magneto-optical trap as a source of slow atoms
,”
Opt. Commun.
157
,
303
309
(
1998
).
17.
R. S.
Williamson
III
,
P. A.
Voytas
,
R. T.
Newell
, and
T.
Walker
, “
A magneto-optical trap loaded from a pyramidal funnel
,”
Opt. Express
3
(
3
),
111
117
(
1998
).
18.
A. S.
Arnold
,
J. S.
Wilson
, and
M. G.
Boshier
, “
A simple extended-cavity diode laser
,”
Rev. Sci. Instrum.
69
(
3
),
1236
1239
(
1998
). We use this ECDL design with a Sanyo DL-7140-201 laser diode.
19.
L.
Ricci
,
M.
Weidemüller
,
T.
Esslinger
,
A.
Hemmerich
,
C.
Zimmermann
,
V.
Vuletic
,
W.
König
, and
T. W.
Hänsch
, “
A compact grating stabilized diode laser for atomic physics
,”
Opt. Commun.
117
,
541
549
(
1995
).
20.
G. D.
Rovera
,
G.
Santarelli
, and
A.
Clairon
, “
A laser diode system stabilized on the cesium D2 line
,”
Rev. Sci. Instrum.
65
(
5
),
1502
1505
(
1994
).
21.
K. G.
Libbrecht
and
J. L.
Hall
, “
A low-noise high speed diode laser current controller
,”
Rev. Sci. Instrum.
64
(
8
),
2133
2135
(
1993
).
22.
Using the following procedures with Conflat-type flanges we have never had a leak. Make sure the flange knife edges are clean (use acetone, a hemostat, and an optical tissue to wipe clean if necessary); always use a new copper gasket; make sure the gasket is positioned correctly between the two faces of the flange; tighten each of the bolts by hand and check that the gap between the two faces of the flange is even around the entire circumference; tighten opposing pairs of bolts with a torque wrench in small steps; keep tightening until the two faces of the flange meet squarely.
23.
Nigel S. Harris, Modern Vacuum Practice (McGraw–Hill, London, 1989).
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.