We present detailed instructions for the construction of a pyramidal-style laser cooling and trapping apparatus. This scheme requires only a single beam, rather than the three pairs of orthogonal beams of the standard magneto-optical trap, which greatly simplifies the geometry and substantially reduces the cost. The trap is based largely on low-cost commercially available items and is simple to construct. It is remarkably insensitive to alignment and reliable to operate. Using a single laser beam with an intensity of 1.3 mW/cm2 we cool and trap more than 4 million rubidium atoms.
REFERENCES
1.
Sarah L.
Gilbert
and Carl E.
Wieman
, “Laser cooling and trapping for the masses
,” Opt. Photonics News
4
(7
), 8
–14
(1993
).2.
M. H.
Anderson
, J. R.
Ensher
, M. R.
Matthews
, C. E.
Wieman
, and E. A.
Cornell
, “Observation of Bose–Einstein condensation in a dilute atomic vapor
,” Science
269
, 198
–201
(1995
);Isaac F.
Silvera
, “Bose–Einstein condensation
,” Am. J. Phys.
65
(6
), 570
–574
(1997
).3.
M.-O.
Mewes
, M. R.
Andrews
, D. M.
Kurn
, D. S.
Durfee
, C. G.
Townsend
, and W.
Ketterle
, “Output Coupler for Bose–Einstein Condensed Atoms
,” Phys. Rev. Lett.
78
(4
), 582
–585
(1997
);Daniel Kleppner, “A beginner’s guide to the atom laser,” Phys. Today 11–13 (August, 1997).
4.
Proceedings of the International School of Physics “Enrico Fermi,” Course CXVIII, Laser Manipulation of Atoms and Ions, edited by E. Arimondo, W. D. Phillips, and F. Strumia (North-Holland, Amsterdam, 1992).
5.
The 1997 Physics Nobel Prize was awarded to Steven Chu, Claude Cohen-Tannoudji, and William D. Phillips, for development of methods to cool and trap atoms with laser light. The 2001 Physics Nobel Prize was awarded to Eric Cornell, Carl Wieman, and Wolfgang Ketterle, for the achievement of Bose–Einstein condensation in dilute gases of alkali atoms, and for early fundamental studies of the properties of the condensates.
6.
M. R.
Anderson
, C. G.
Townsend
, H.-J.
Miesner
, D. S.
Durfee
, D. M.
Kurn
, and W.
Ketterle
, “Observation of interference between two Bose condensates
,” Science
275
, 637
–641
(1997
).7.
L.
Deng
, E. W.
Hagley
, J.
Wen
, M.
Trippenbach
, Y.
Band
, P. S.
Julienne
, J. E.
Simsarian
, K.
Helmerson
, S. L.
Rolston
, and W. D.
Phillips
, “Four-wave mixing with matter waves
,” Nature (London)
398
, 218
–220
(1999
).8.
Elizabeth A.
Donley
, Neil R.
Claussen
, Simon L.
Cornish
, Jacob L.
Roberts
, Eric A.
Cornell
, and Carl E.
Wieman
, “Dynamics of collapsing and exploding Bose-Einstein condensates
,” eprint cond-mat/0105019 2001
.9.
Carl
Wieman
, Gwenn
Flowers
, and Sarah
Gilbert
, “Inexpensive laser cooling and trapping experiment for undergraduate laboratories
,” Am. J. Phys.
63
(4
), 317
–330
(1995
).10.
K. B.
MacAdam
, A.
Steinbach
, and C.
Wieman
, “A narrow-band tunable diode laser system with grating feedback and a saturated absorption spectrometer for Cs and Rb
,” Am. J. Phys.
60
(12
), 1098
–1111
(1992
).11.
Paul
Feng
and Thad
Walker
, “Inexpensive diode laser microwave modulation for atom trapping
,” Am. J. Phys.
63
, 905
–908
(1995
).12.
Daryl W.
Preston
, “Doppler-free saturated absorption: Laser spectroscopy
,” Am. J. Phys.
64
(11
), 1432
–1436
(1996
).13.
Phillip
Gould
, “Laser cooling of atoms to the Doppler limit
,” Am. J. Phys.
65
(11
), 1120
–1123
(1997
).14.
Yukiko
Shimizu
and Hiroyuki
Sasada
, “Mechanical force in laser cooling and trapping
,” Am. J. Phys.
66
(11
), 960
–967
(1998
).15.
K. I.
Lee
, J. A.
Kim
, H. R.
Noh
, and W.
Jhe
, “Single-beam atom trap in a pyramidal and conical hollow mirror
,” Opt. Lett.
21
(15
), 1177
–1179
(1996
);J. A.
Kim
, K. I.
Lee
, H. R.
Noh
, and W.
Jhe
, “Atom trap in an axicon mirror
,” Opt. Lett.
21
(2
), 117
–119
(1997
).16.
J. J.
Arlt
, O.
Maragò
, S.
Webster
, S.
Hopkins
, and C. J.
Foot
, “A pyramidal magneto-optical trap as a source of slow atoms
,” Opt. Commun.
157
, 303
–309
(1998
).17.
R. S.
Williamson
III, P. A.
Voytas
, R. T.
Newell
, and T.
Walker
, “A magneto-optical trap loaded from a pyramidal funnel
,” Opt. Express
3
(3
), 111
–117
(1998
).18.
A. S.
Arnold
, J. S.
Wilson
, and M. G.
Boshier
, “A simple extended-cavity diode laser
,” Rev. Sci. Instrum.
69
(3
), 1236
–1239
(1998
). We use this ECDL design with a Sanyo DL-7140-201 laser diode.19.
L.
Ricci
, M.
Weidemüller
, T.
Esslinger
, A.
Hemmerich
, C.
Zimmermann
, V.
Vuletic
, W.
König
, and T. W.
Hänsch
, “A compact grating stabilized diode laser for atomic physics
,” Opt. Commun.
117
, 541
–549
(1995
).20.
G. D.
Rovera
, G.
Santarelli
, and A.
Clairon
, “A laser diode system stabilized on the cesium line
,” Rev. Sci. Instrum.
65
(5
), 1502
–1505
(1994
).21.
K. G.
Libbrecht
and J. L.
Hall
, “A low-noise high speed diode laser current controller
,” Rev. Sci. Instrum.
64
(8
), 2133
–2135
(1993
).22.
Using the following procedures with Conflat-type flanges we have never had a leak. Make sure the flange knife edges are clean (use acetone, a hemostat, and an optical tissue to wipe clean if necessary); always use a new copper gasket; make sure the gasket is positioned correctly between the two faces of the flange; tighten each of the bolts by hand and check that the gap between the two faces of the flange is even around the entire circumference; tighten opposing pairs of bolts with a torque wrench in small steps; keep tightening until the two faces of the flange meet squarely.
23.
Nigel S. Harris, Modern Vacuum Practice (McGraw–Hill, London, 1989).
This content is only available via PDF.
© 2002 American Association of Physics Teachers.
2002
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.