Quantum scattering in the presence of a potential valley followed by a barrier is examined for a Morse potential, for which exact analytical solutions are known. For our application the sign of the potential is reversed, and the wave function is required to vanish at the origin. This condition requires a special combination of hypergeometric functions, and can lead to resonances for incident energies below the top of the barrier. Numerical values for the analytical phase shifts are presented in and outside the resonant regions, and the corresponding properties of the scattering S matrix are examined in the complex momentum plane. The validity of the Breit–Wigner approximation to the resonant part of the phase shifts is tested, and a new method for finding the location of narrow resonances is described. The time decay of a resonant wave packet slowly leaking out of the valley region (on a time scale proportional to the inverse of the width of the resonance) is compared with theoretical predictions, and complete agreement is not found.

1.
P. M.
Morse
, “
Diatomic molecules according to the wave mechanics. II. Vibrational levels
,”
Phys. Rev.
34
,
57
64
(
1929
).
2.
G.
Poschl
and
E.
Teller
, “
Bemerkungen zur Quantenmechanik des anharmonischen Oscillators
,”
Z. Phys.
83
,
143
151
(
1933
).
3.
S. Flugge, Practical Quantum Mechanics (Springer-Verlag, New York, Heidelberg, Berlin, 1974), p. 182.
4.
Y.
Alhassid
,
F.
Gursay
, and
F.
Iachello
, “
Potential scattering, transfer matrix and group theory
,”
Phys. Rev. Lett.
50
,
873
876
(
1983
);
A.
Barut
,
A.
Inomata
, and
R.
Wilson
, “
Algebraic treatment of second-order Poschl–Teller, Morse–Rosen, and Eckart equations
,”
J. Phys. A
20
,
4083
4096
(
1987
).
5.
Y.
Alhassid
and
J.
Wu
, “
An algebraic approach to Morse potential scattering
,”
Chem. Phys. Lett.
109
,
81
84
(
1984
);
Y.
Alhassid
,
F.
Gursay
, and
F.
Iachello
, “
Group theory of the Morse oscillator
,”
Chem. Phys. Lett.
99
,
27
30
(
1983
);
Y.
Alhassid
,
F.
Gursay
, and
F.
Iachello
, “
Group theory approach to scattering
,”
Ann. Phys. (Leipzig)
148
,
346
380
(
1983
).
6.
A. O.
Barut
,
A.
Inomata
, and
R.
Wilson
, “
The generalized Morse oscillator in the SO(4,2) dynamical group scheme
,”
J. Math. Phys.
28
,
605
611
(
1987
).
7.
Z.
Ahmed
, “
Tunneling through the Morse barrier
,”
Phys. Lett. A
157
,
1
5
(
1991
);
Z.
Ahmed
, “
Tunneling through a one-dimensional potential barrier
,”
Phys. Lett. A
47
,
4761
4767
(
1993
).
8.
B.
Lundborg
, “
Phase-integral treatment of transmission through an inverted Morse potential
,”
Math. Proc. Cambridge Philos. Soc.
81
,
463
483
(
1977
).
9.
A. S.
Dickinson
, “
An approximate treatment of shape resonances in elastic scattering
,”
Mol. Phys.
18
,
441
449
(
1970
).
10.
P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw- Hill, New York, 1953), Vol. 2, p. 1672;
L. Landau and E. Lifschitz, Quantum Mechanics, 3rd ed. (Pergamon, Oxford, 1977), p. 72.
11.
G. Rawitscher and I. Koltracht (unpublished).
12.
Handbook of Mathematical Functions, edited by M. Abramowitz and I. Stegun (Dover, New York, 1972).
13.
H. M.
Nussenzweig
, “
The poles of the S-matrix of a rectangular potential well or barrier
,”
Nucl. Phys.
11
,
499
521
(
1959
).
14.
V. I. Kukulin, V. M. Krasnopol’sky, and J. Horác̆ek, Theory of Resonances: Principles and Applications (Kluwer Academic, Dodrecht, 1989), p. 28.
15.
S. Wolfram, Mathematica: A System for Doing Mathematics by Computer, 2nd ed. (Addison-Wesley, Redwood City, CA, 1991).
16.
R. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, New York, 1966), pp. 313–317.
17.
Israel Koltracht, Department of Mathematics, University of Connecticut (private communication).
18.
The Weyl–Titchmarsh–Kodaira theorem on spectral energy densities is described in Eigenfunctions Expansion Associated with Second-Order Differential Equations, edited by E. C. Titchmarsh (Oxford University Press, Oxford, 1946), Vols. I and II;
K.
Kodaira
, “
The eigenvalue problem for ordinary differential equations of the second order, and Heisenberg’s theory of S-matrices
,”
Am. J. Math.
71
,
921
945
(
1949
).
19.
G. N.
Gibson
,
G.
Dunne
, and
K. J.
Bergquist
, “
Tunneling ionization rates from arbitrary potential wells
,”
Phys. Rev. Lett.
81
,
2663
2666
(
1998
);
K.
Barnett
and
G. N.
Gibson
, “
Static field tunneling ionization of H2+,
Phys. Rev. A
59
,
4843
4846
(
1999
).
20.
O. I.
Tolstikhin
,
V. N.
Ostrovsky
, and
H.
Nakamura
, “
Siegert pseudo-states as a universal tool: resonances, S matrix, Green function
,”
Phys. Rev. Lett.
79
,
2026
2029
(
1997
);
O. I.
Tolstikhin
,
V. N.
Ostrovsky
, and
H.
Nakamura
, “
Siegert pseudosate formulation of scattering theory: One channel case
,”
Phys. Rev. A
58
,
2077
2096
(
1998
).
21.
G.
Breit
and
E.
Wigner
, “
Capture of slow neutrons
,”
Phys. Rev.
49
,
519
531
(
1936
).
22.
G.
Rawitscher
,
I.
Koltracht
,
Hong
Dai
, and
C.
Ribetti
, “
The vibrating string: a fertile topic for teaching scientific computing
,”
Comp. in Phys.
10
,
335
340
(
1996
).
23.
G. H.
Rawitscher
,
B. D.
Esry
,
E.
Tiesinga
,
J. P.
Burke
, Jr.
, and
I.
Koltracht
, “
Comparison of numerical methods for the calculation of cold atom collisions
,”
J. Chem. Phys.
111
,
10418
(
1999
).
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.