The main purposes of this paper are (i) to illustrate explicitly by a number of examples the gauge functions $\chi (x,t)$ whose spatial and temporal derivatives transform one set of electromagnetic potentials into another equivalent set; and (ii) to show that, whatever propagation or nonpropagation characteristics are exhibited by the potentials in a particular gauge, the electric and magnetic *fields* are always the same and display the experimentally verified properties of causality and propagation at the speed of light. The example of the transformation from the Lorenz gauge (retarded solutions for both scalar and vector potential) to the Coulomb gauge (instantaneous, action-at-a-distance, scalar potential) is treated in detail. A transparent expression is obtained for the vector potential in the Coulomb gauge, with a finite nonlocality in time replacing the expected spatial nonlocality of the transverse current. A class of gauges (v-gauge) is described in which the scalar potential propagates at an arbitrary speed ν relative to the speed of light. The Lorenz and Coulomb gauges are special cases of the v-gauge. The last examples of gauges and explicit gauge transformation functions are the Hamiltonian or temporal gauge, the nonrelativistic Poincaré or multipolar gauge, and the relativistic Fock–Schwinger gauge.

## REFERENCES

*Classical Electrodynamics*(Wiley, New York, 1999), 3rd ed.

*Introduction to Electrodynamics*(Prentice Hall, Upper Saddle River, NJ, 1999), 3rd ed.

*Classical Electricity and Magnetism*(Addison–Wesley, Reading, MA, 1962), 2nd ed.

**A**.

*Particles, Sources, and Fields*, 3 vols. (Addison–Wesley, Reading, MA, 1970–1973), Vol. I, p. 271.

*Quantum Theory of Light*(Oxford U.P., New York, 2000), 3rd ed., pp. 155–162.

*American Journal of Physics*and

*The Physics Teacher*as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.