We present detailed instructions for constructing and operating an apparatus to produce and detect polarization-entangled photons. The source operates by type I spontaneous parametric downconversion in a two-crystal geometry. Photons are detected in coincidence by single-photon counting modules and show strong angular and polarization correlations. We observe more than 100 entangled photon pairs per second. A test of a Bell inequality can be performed in an afternoon.
REFERENCES
1.
A.
Einstein
, B.
Podolsky
, and N.
Rosen
, “Can quantum-mechanical description of physical reality be considered complete?
” Phys. Rev.
47
, 777
–780
(1935
).2.
J. S.
Bell
, “On the Einstein–Podolski–Rosen Paradox
,” Physics (Long Island City, N.Y.)
1
, 195
–200
(1964
). This article is reprinted in Ref. 3.3.
A. K.
Ekert
, “Quantum cryptography based on Bell’s theorem
,” Phys. Rev. Lett.
67
(6
), 661
–663
(1991
).4.
D. S.
Naik
, C. G.
Peterson
, A. G.
Whie
, A. J.
Berglund
, and P. G.
Kwiat
, “Entangled state quantum cryptography: Eavesdropping on the Ekert protocol
,” Phys. Rev. Lett.
84
(20
), 4733
–4736
(2000
).5.
T.
Jennewein
, C.
Simon
, G.
Wells
, H.
Weinfurter
, and A.
Zeilinger
, “Quantum cryptography with entangled photons
,” Phys. Rev. Lett.
84
(20
), 4729
–4732
(2000
).6.
C. H.
Bennett
and S. J.
Wiesner
, “Communication via one-particle and 2-particle operators on Einstein-Podolsky-Rosen states
,” Phys. Rev. Lett.
69
(20
), 2881
–2884
(1992
).7.
K.
Mattle
, H.
Weinfurter
, P. G.
Kwiat
, and A.
Zeilinger
, “Dense coding in experimental quantum communication
,” Phys. Rev. Lett.
76
(25
), 4656
–4659
(1996
).8.
C. H.
Bennett
, G.
Brassard
, C.
Crepeau
, A.
Jozsa
, A.
Peres
, and W. K.
Wootters
, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels
,” Phys. Rev. Lett.
70
(13
), 1895
–1899
(1993
).9.
D.
Bouwmeester
, J.-W.
Pan
, K.
Mattle
, M.
Eibl
, H.
Weinfurer
, and A.
Zeilinger
, “Experimental quantum teleportation
,” Nature (London)
390
(6660
), 575
–579
(1997
).10.
R. P.
Feynman
, “Simulating physics with computers
,” Int. J. Theor. Phys.
21
(6-7
), 467
–488
(1982
).11.
D.
Deutsch
and R.
Jozsa
, “Rapid solution of problems by quantum computation
,” Proc. R. Soc. London, Ser. A
439
(1907
), 553
–558
(1992
).12.
P. W.
Shor
, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer
,” SIAM J. Comput.
26
(5
), 1484
–1509
(1997
).13.
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge U. P., Cambridge, 2000).
14.
P. G.
Kwiat
, K.
Mattle
, H.
Weinfurter
, A.
Zeilinger
, A. V.
Sergienko
, and Y. H.
Shih
, “New high-intensity source of polarization-entangled photon pairs
,” Phys. Rev. Lett.
75
(24
), 4337
–4341
(1995
).15.
P. G.
Kwiat
, E.
Waks
, A. G.
White
, I.
Appelbaum
, and P. H.
Eberhard
, “Ultrabright source of polarization-entangled photons
,” Phys. Rev. A
60
(2
), R773
–R776
(1999
).16.
C. K.
Hong
and L.
Mandel
, “Theory of parametric frequency down conversion of light
,” Phys. Rev. A
31
(4
), 2409
–2418
(1985
).17.
P.
Hariharan
and B. C.
Sanders
, “Quantum phenomena in optical interferometry
,” Prog. Opt.
36
, 49
–128
(1996
).18.
R. W. Boyd, Nonlinear Optics (Academic, Boston, MA, 1992).
19.
Perkin-Elmer Optoelectronics, SPCM-AQR Single-Photon Counting Module Data Sheet.
20.
M.
Ghioni
, S.
Cova
, F.
Zappa
, and C.
Samori
, “Compact active quenching circuit for fast photon counting with avalanche photodiodes
,” Rev. Sci. Instrum.
67
(10
), 3440
–3448
(1996
).21.
J. F.
Clauser
, M. A.
Horne
, A.
Shimony
, and R. A.
Holt
, “Proposed experiment to test local hidden-variable theories
,” Phys. Rev. Lett.
23
(15
), 880
–884
(1969
).22.
D.
Dehlinger
and M. W.
Mitchell
, “Entangled photons, nonlocality, and Bell inequalities in the undergraduate laboratory
,” Am. J. Phys.
70
, 903
(2002
).
This content is only available via PDF.
© 2002 American Association of Physics Teachers.
2002
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.