We show how a simple electronic parametric oscillator can be used to exhibit both supercritical and subcritical bifurcations to a subharmonic oscillatory state as the pump frequency is varied, and study the scaling behavior of the oscillation amplitude in the vicinity of the tricritical point.

1.
P. Horowitz and W. Hill, The Art of Electronics (Cambridge U.P., Cambridge, 1989), 2nd ed., p. 903.
2.
L.
Ruby
, “
Applications of the Mathieu equation
,”
Am. J. Phys.
64
,
39
44
(
1996
).
3.
M.
Brillouin
, “
Théorie d’un alternateur auto-excitateur
,”
L’Éclairage Électrique
XI-15
,
49
59
(
1897
).
4.
D.
Rugar
and
P.
Grütter
, “
Mechanical parametric amplification and thermomechanical noise squeezing
,”
Phys. Rev. Lett.
67
,
699
702
(
1991
).
5.
L.
Falk
, “
Student experiments on parametric resonance
,”
Am. J. Phys.
47
,
325
328
(
1979
).
6.
E. D.
Yorke
, “
Square-wave model for a pendulum with oscillating suspension
,”
Am. J. Phys.
46
,
285
288
(
1978
).
7.
W.
Case
, “
The pumping of a swing from the seated position
,”
Am. J. Phys.
58
,
463
467
(
1990
).
8.
W.
Case
, “
The pumping of a swing from the standing position
,”
Am. J. Phys.
64
,
215
220
(
1996
).
9.
W.
Case
, “
Parametric instability: An elementary demonstration and discussion
,”
Am. J. Phys.
48
,
218
221
(
1980
).
10.
F. L.
Curzon
,
A. L. H.
Loke
,
M. E.
Lefrançois
, and
K. E.
Novik
, “
Parametric instability of a pendulum
,”
Am. J. Phys.
63
,
132
136
(
1995
).
11.
M.
Faraday
, “
On the forms and states assumed by fluids in contact with vibrating elastic surfaces
,”
Philos. Trans. R. Soc. London
52
,
319
340
(
1831
).
12.
W. S.
Edwards
and
S.
Fauve
, “
Parametrically excited quasicrystalline surface waves
,”
Phys. Rev. E
47
,
788
791
(
1993
).
13.
K.
Kumar
, “
Linear theory of Faraday instability in viscous liquids
,”
Proc. R. Soc. London, Ser. A
452
,
1113
1126
(
1996
).
14.
J.
Bechhoefer
,
V.
Ego
,
S.
Manneville
, and
B.
Johnson
, “
An experimental study of the onset of the parametrically pumped surface waves in viscous fluids
,”
J. Fluid Mech.
288
,
325
350
(
1995
).
15.
S. Douady, Ph.D. thesis, ENS-Lyon, 1989 (unpublished).
16.
S.
Fauve
,
K.
Kumar
,
C.
Laroche
,
D.
Beysens
, and
Y.
Garrabos
, “
Parametric instability of a liquid-vapor interface close to the critical point
,”
Phys. Rev. Lett.
68
,
3160
3163
(
1992
).
17.
T. B.
Benjamin
and
F.
Ursell
, “
The stability of the plane free surface of a liquid in vertical periodic motion
,”
Proc. R. Soc. London, Ser. A
225
,
505
515
(
1954
).
18.
T.
Pritchett
and
J. K.
Kim
, “
A low-cost apparatus for the production of surface wave patterns in a vertically oscillating fluid
,”
Am. J. Phys.
66
,
830
833
(
1998
).
19.
D. G.
Luchinsky
,
P. V. E.
McClintock
, and
M. I.
Dykman
, “
Analogue studies of non-linear systems
,”
Rep. Prog. Phys.
61
,
889
997
(
1998
).
20.
L. Landau and E. Lifschitz, Mechanics (Pergamon, London, 1960), Sec. 27.
21.
S. Fauve, in “Pattern forming instabilities,” in Woods Hole GFD Summer School Technical Report, 1991 and in Hydrodynamics and Non-Linear Instabilities, edited by C. Godrèche and P. Manneville (Cambridge U.P., Cambridge, 1998), Chap. 4.
22.
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Applied Mathematical Sciences Vol. 42 (Springer, New York, 1983), p. 149.
23.
S. Fauve, “Waves on interfaces,” in Free Surface Flows, International Centre for Mechanical Sciences Courses and Lectures, No. 391 (Springer-Wien, New York, 1998).
24.
F. X.
Bally
and
P.
Boissé
, “
Un modèle électronique simple et exact de l’oscillateur paramétrique
,”
Bulletin de l’Union des Physicens
747
,
1267
1276
(
1992
).
25.
Technical documentation on varicap BB909A, Philips Semiconductors.
26.
Reference 1, Sec. 5.10.
27.
Reference 1, Sec. 4.06.
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.