We show how a simple electronic parametric oscillator can be used to exhibit both supercritical and subcritical bifurcations to a subharmonic oscillatory state as the pump frequency is varied, and study the scaling behavior of the oscillation amplitude in the vicinity of the tricritical point.
REFERENCES
1.
P. Horowitz and W. Hill, The Art of Electronics (Cambridge U.P., Cambridge, 1989), 2nd ed., p. 903.
2.
L.
Ruby
, “Applications of the Mathieu equation
,” Am. J. Phys.
64
, 39
–44
(1996
).3.
M.
Brillouin
, “Théorie d’un alternateur auto-excitateur
,” L’Éclairage Électrique
XI-15
, 49
–59
(1897
).4.
D.
Rugar
and P.
Grütter
, “Mechanical parametric amplification and thermomechanical noise squeezing
,” Phys. Rev. Lett.
67
, 699
–702
(1991
).5.
L.
Falk
, “Student experiments on parametric resonance
,” Am. J. Phys.
47
, 325
–328
(1979
).6.
E. D.
Yorke
, “Square-wave model for a pendulum with oscillating suspension
,” Am. J. Phys.
46
, 285
–288
(1978
).7.
W.
Case
, “The pumping of a swing from the seated position
,” Am. J. Phys.
58
, 463
–467
(1990
).8.
W.
Case
, “The pumping of a swing from the standing position
,” Am. J. Phys.
64
, 215
–220
(1996
).9.
W.
Case
, “Parametric instability: An elementary demonstration and discussion
,” Am. J. Phys.
48
, 218
–221
(1980
).10.
F. L.
Curzon
, A. L. H.
Loke
, M. E.
Lefrançois
, and K. E.
Novik
, “Parametric instability of a pendulum
,” Am. J. Phys.
63
, 132
–136
(1995
).11.
M.
Faraday
, “On the forms and states assumed by fluids in contact with vibrating elastic surfaces
,” Philos. Trans. R. Soc. London
52
, 319
–340
(1831
).12.
W. S.
Edwards
and S.
Fauve
, “Parametrically excited quasicrystalline surface waves
,” Phys. Rev. E
47
, 788
–791
(1993
).13.
K.
Kumar
, “Linear theory of Faraday instability in viscous liquids
,” Proc. R. Soc. London, Ser. A
452
, 1113
–1126
(1996
).14.
J.
Bechhoefer
, V.
Ego
, S.
Manneville
, and B.
Johnson
, “An experimental study of the onset of the parametrically pumped surface waves in viscous fluids
,” J. Fluid Mech.
288
, 325
–350
(1995
).15.
S. Douady, Ph.D. thesis, ENS-Lyon, 1989 (unpublished).
16.
S.
Fauve
, K.
Kumar
, C.
Laroche
, D.
Beysens
, and Y.
Garrabos
, “Parametric instability of a liquid-vapor interface close to the critical point
,” Phys. Rev. Lett.
68
, 3160
–3163
(1992
).17.
T. B.
Benjamin
and F.
Ursell
, “The stability of the plane free surface of a liquid in vertical periodic motion
,” Proc. R. Soc. London, Ser. A
225
, 505
–515
(1954
).18.
T.
Pritchett
and J. K.
Kim
, “A low-cost apparatus for the production of surface wave patterns in a vertically oscillating fluid
,” Am. J. Phys.
66
, 830
–833
(1998
).19.
D. G.
Luchinsky
, P. V. E.
McClintock
, and M. I.
Dykman
, “Analogue studies of non-linear systems
,” Rep. Prog. Phys.
61
, 889
–997
(1998
).20.
L. Landau and E. Lifschitz, Mechanics (Pergamon, London, 1960), Sec. 27.
21.
S. Fauve, in “Pattern forming instabilities,” in Woods Hole GFD Summer School Technical Report, 1991 and in Hydrodynamics and Non-Linear Instabilities, edited by C. Godrèche and P. Manneville (Cambridge U.P., Cambridge, 1998), Chap. 4.
22.
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Applied Mathematical Sciences Vol. 42 (Springer, New York, 1983), p. 149.
23.
S. Fauve, “Waves on interfaces,” in Free Surface Flows, International Centre for Mechanical Sciences Courses and Lectures, No. 391 (Springer-Wien, New York, 1998).
24.
F. X.
Bally
and P.
Boissé
, “Un modèle électronique simple et exact de l’oscillateur paramétrique
,” Bulletin de l’Union des Physicens
747
, 1267
–1276
(1992
).25.
Technical documentation on varicap BB909A, Philips Semiconductors.
26.
Reference 1, Sec. 5.10.
27.
Reference 1, Sec. 4.06.
This content is only available via PDF.
© 2002 American Association of Physics Teachers.
2002
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.