Quantum trajectory theory, developed largely in the quantum optics community to describe open quantum systems subjected to continuous monitoring, has applications in many areas of quantum physics. I present a simple model, using two-level quantum systems (q-bits), to illustrate the essential physics of quantum trajectories and how different monitoring schemes correspond to different “unravelings” of a mixed state master equation. I also comment briefly on the relationship of the theory to the consistent histories formalism and to spontaneous collapse models.

1.
H. J. Carmichael, An Open Systems Approach to Quantum Optics (Springer, Berlin, 1993).
2.
J.
Dalibard
,
Y.
Castin
and
K.
Mølmer
, “
Wave-function approach to dissipative processes in quantum optics
,”
Phys. Rev. Lett.
68
,
580
583
(
1992
).
3.
R.
Dum
,
P.
Zoller
, and
H.
Ritsch
, “
Monte Carlo simulation of the atomic master equation for spontaneous emission
,”
Phys. Rev. A
45
,
4879
4887
(
1992
).
4.
C. W.
Gardiner
,
A. S.
Parkins
, and
P.
Zoller
, “
Wave-function quantum stochastic differential equations and quantum-jump simulation methods
,”
Phys. Rev. A
46
,
4363
4381
(
1992
).
5.
N.
Gisin
, “
Quantum measurements and stochastic processes
,”
Phys. Rev. Lett.
52
,
1657
1660
(
1984
);
N.
Gisin
, “
Stochastic quantum dynamics and relativity
,”
Helv. Phys. Acta
62
,
363
371
(
1989
).
6.
L.
Diósi
, “
Quantum stochastic processes as models for state vector reduction
,”
J. Phys. A
21
,
2885
2898
(
1988
);
L.
Diósi
, “
Continuous quantum measurement and Ito-formalism
,”
Phys. Lett. A
129
,
419
423
(
1988
);
L.
Diósi
, “
Localized solution of simple nonlinear quantum Langevin-equation
,”
Phys. Lett. A
132
,
233
236
(
1988
).
7.
N.
Gisin
and
I. C.
Percival
, “
The quantum-state diffusion model applied to open systems
,”
J. Phys. A
25
,
5677
5691
(
1992
);
N.
Gisin
and
I. C.
Percival
, “
Quantum state diffusion, localization and quantum dispersion entropy
,”
J. Phys. A
26
,
2233
2243
(
1993
);
N.
Gisin
and
I. C.
Percival
,
J. Phys. A
“The quantum state diffusion picture of physical processes,”
26
,
2245
2260
(
1993
).
8.
R.
Schack
,
T. A.
Brun
, and
I. C.
Percival
, “
Quantum state diffusion, localization and computation
,”
J. Phys. A
28
,
5401
5413
(
1995
).
9.
M. B.
Plenio
and
P. L.
Knight
, “
The quantum-jump approach to dissipative dynamics in quantum optics
,”
Rev. Mod. Phys.
70
,
101
144
(
1998
).
10.
I. C. Percival, Quantum State Diffusion (Cambridge U.P., Cambridge, 1998).
11.
H. D.
Zeh
, “
Why Bohm’s quantum theory?
Found. Phys. Lett.
12
,
197
200
(
1999
).
12.
P.
Pearle
, “
Reduction of the state vector by a nonlinear Schrödinger equation
,”
Phys. Rev. D
13
,
857
868
(
1976
);
P.
Pearle
, “
Toward explaining why events occur
,”
Int. J. Theor. Phys.
18
,
489
518
(
1979
).
13.
G. C.
Ghirardi
,
A.
Rimini
, and
T.
Weber
, “
Unified dynamics for microscopic and macroscopic systems
,”
Phys. Rev. D
34
,
470
491
(
1986
).
14.
I. C.
Percival
, “
Primary state diffusion
,”
Proc. R. Soc. London, Ser. A
447
,
1
21
(
1994
);
I. C.
Percival
,
Proc. R. Soc. London, Ser. A
“Quantum space-time fluctuations and primary state diffusion,”
451
,
503
513
(
1995
).
15.
R. Penrose, in Bangalore 1994, Non-Accelerator Particle Physics, edited by R. Cowsik (World Scientific, River Edge, NJ, 1995), Vol. 416.
16.
E. B. Davies, Quantum Theory of Open Systems (Academic, London, 1976).
17.
D. J.
Wineland
,
C.
Monroe
,
W. M.
Itano
,
D.
Leibfried
,
B.
King
, and
D. M.
Meekhof
, “
Experimental issues in coherent quantum-state manipulation of trapped atomic ions
,”
J. Res. NIST
103
,
259
328
(
1998
).
18.
M.
Brune
,
S.
Haroche
,
V.
Lefevre
,
J. M.
Raimond
, and
N.
Zagury
, “
Quantum nondemolition measurement of small photon numbers by Rydberg-atom phase-sensitive detection
,”
Phys. Rev. Lett.
65
,
976
979
(
1990
).
19.
D.
Loss
and
D. P.
DiVincenzo
, “
Quantum computation with quantum dots
,”
Phys. Rev. A
57
,
120
126
(
1998
).
20.
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge U.P., Cambridge, 2000).
21.
A sampling of proposals for physical embodiments of quantum computation includes
J. I.
Cirac
and
P.
Zoller
, “
Quantum computations with cold trapped ions
,”
Phys. Rev. Lett.
74
,
4091
4094
(
1995
);
T.
Pellizzari
et al., “
Decoherence, continuous observation, and quantum computing: A cavity QED model
,”
Phys. Rev. Lett.
75
,
3788
3791
(
1995
);
N. A.
Gershenfeld
and
I. L.
Chuang
, “
Bulk spin resonance quantum computation
,”
Science
275
,
350
356
(
1997
);
B. E.
Kane
, “
A silicon-based nuclear spin quantum computer
,”
Nature (London)
393
,
133
137
(
1998
);
A.
Imamoglu
et al., “
Quantum information processing using quantum dot spins and cavity QED
,”
Phys. Rev. Lett.
83
,
4204
4207
(
1999
);
M. I.
Dykman
and
P. M.
Platzman
, “
Quantum computing using electrons floating on liquid helium
,” quant-ph/0007113;
D. V.
Averin
, “
Quantum computing and quantum measurement with mesoscopic Josephson junctions
,” quant-ph/0008114.
22.
A few recent papers on experimental results in quantum computation and information include
Y.-H.
Kim
et al., “
Quantum teleportation of a polarization state with a complete Bell state measurement
,”
Phys. Rev. Lett.
86
,
1370
1373
(
2001
);
D.
Kielpinski
et al., “
Recent results in trapped-ion quantum computing
,” quant-ph/0102086;
A.
Rauschenbeutel
et al., “
Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment
,” quant-ph/0105062;
J. A.
Jones
, “
Quantum computing and nuclear magnetic resonance
,” quant-ph/0106067.
23.
A. Peres, Quantum Theory: Concepts and Methods (Kluwer, Dordrecht, 1993).
24.
L. Vaidman, in Advances in Quantum Phenomena, edited by E. G. Beltrametti and J.-M. Levy-Leblond (Plenum, New York, 1995), Vol. 357.
25.
W. H.
Zurek
, “
Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse?
Phys. Rev. D
24
,
1516
1525
(
1981
);
W. H.
Zurek
, “
Environment-induced superselection rules
,”
Phys. Rev. D
26
,
1862
1880
(
1982
);
W. H.
Zurek
, “
Decoherence and the transition from quantum to classical
,”
Phys. Today
44
,
36
52
(October
1991
).
26.
E.
Joos
and
H. D.
Zeh
, “
The emergence of classical properties through interaction with the environment
,”
Z. Phys. B: Condens. Matter
59
,
223
243
(
1985
).
27.
G.
Lindblad
, “
On the generators of quantum dynamical semigroups
,”
Commun. Math. Phys.
48
,
119
130
(
1976
).
28.
B.
Misra
and
E. C. G.
Sudarshan
, “
The Zeno’s paradox in quantum theory
,”
J. Math. Phys.
18
,
756
763
(
1977
).
29.
H. M.
Wiseman
and
G. J.
Milburn
, “
Interpretation of quantum jump and diffusion processes illustrated on the Bloch sphere
,”
Phys. Rev. A
47
,
1652
1666
(
1993
).
30.
A. N.
Soklakov
and
R.
Schack
, “
Preparation information and optimal decompositions for mixed quantum states
,”
J. Mod. Opt.
47
,
2265
2276
(
2000
).
31.
E.
Schrödinger
, “
Die gegenwärtige Situation in der Quantenmechanik
,”
Naturwissenschaften
23
,
807
812
(
1935
);
E.
Schrödinger
,
Naturwissenschaften
23
,
823
828
(
1935
);
E.
Schrödinger
,
Naturwissenschaften
23
,
844
849
(
1935
).
32.
J. S.
Bell
, “
On the Einstein–Podolsky–Rosen paradox
,”
Physics (Long Island City, N.Y.)
1
,
195
200
(
1964
).
33.
D.
Bohm
, “
A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. I
,”
Phys. Rev.
85
,
166
179
(
1952
).
34.
I. C.
Percival
and
W. T.
Strunz
, “
Detection of spacetime fluctuations by a model matter interferometer
,”
Proc. R. Soc. London, Ser. A
453
,
431
446
(
1997
);
W. L.
Power
and
I. C.
Percival
, “
Decoherence of quantum wavepackets due to interaction with conformal spacetime fluctuations
,”
Proc. R. Soc. London, Ser. A
456
,
955
968
(
2000
).
35.
S. L.
Adler
and
T. A.
Brun
, “
Generalized stochastic Schrödinger equations for state vector collapse
,”
J. Phys. A
34
,
4797
4809
(
2001
).
36.
J. B. Hartle, in Quantum Cosmology and Baby Universes: Proceedings of the 1989 Jerusalem Winter School, edited by S. Coleman, J. B. Hartle, T. Piran, and S. Weinberg (World Scientific, Singapore, 1991).
37.
R. B.
Griffiths
, “
Consistent histories and the interpretation of quantum mechanics
,”
J. Stat. Phys.
36
,
219
272
(
1984
);
R. B.
Griffiths
, “
Consistent histories and quantum reasoning
,”
Phys. Rev. A
54
,
2759
2774
(
1996
);
R. B.
Griffiths
, “
Choice of consistent family, and quantum incompatibility
,”
Phys. Rev. A
57
,
1604
1618
(
1998
).
38.
R. Omnès, The Interpretation of Quantum Mechanics (Princeton U.P., Princeton, 1994); Understanding Quantum Mechanics (Princeton U.P., Princeton, 1999).
39.
M. Gell-Mann and J. B. Hartle, in Complexity, Entropy, and the Physics of Information, SFI Studies in the Science of Complexity, edited by W. Zurek (Addison–Wesley, Reading, 1990), Vol. VIII; in Proceedings of the Third International Symposium on the Foundations of Quantum Mechanics in the Light of New Technology, edited by S. Kobayashi, H. Ezawa, Y. Murayama, and S. Nomura (Physical Society of Japan, Tokyo, 1990); in Proceedings of the 25th International Conference on High Energy Physics, Singapore, 2–8 August 1990, edited by K. K. Phua and Y. Yamaguchi (World Scientific, Singapore, 1990).
40.
L.
Diósi
,
N.
Gisin
,
J. J.
Halliwell
, and
I. C.
Percival
, “
Decoherent histories and quantum state diffusion
,”
Phys. Rev. Lett.
74
,
203
207
(
1995
).
41.
T. A.
Brun
, “
Quantum jumps as decoherent histories
,”
Phys. Rev. Lett.
78
,
1833
1837
(
1997
);
T. A.
Brun
, “
Continuous measurements, quantum trajectories, and decoherent histories
,”
Phys. Rev. A
61
,
042107
(
2000
).
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.