The Bertrand theorem, which states that the only power-law central potentials for which the bounded trajectories are closed are 1/r2 and r2, is analyzed using the Poincaré–Lindstedt perturbation method. This perturbation method does not generate secular terms and correctly incorporates the effect of nonlinearities on the nature of periodic solutions. The requirement that the orbits be closed implies that the theorem holds in each order of the expansion.

1.
J.
Bertrand
, “
Mécanique analytique
,”
C. R. Acad. Sci.
77
,
849
853
(
1873
).
2.
E. J. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (Cambridge University Press, Cambridge, MA, 1961), pp. 80–93.
3.
H. Goldstein, Classical Mechanics (Addison Wesley, New York, 1981), App. A, pp. 601–605.
4.
J. L. McCauley, Classical Mechanics (Cambridge University Press, Cambridge, MA, 1997), pp. 134–138.
5.
J. V. José and E. J. Saletan, Classical Dynamics (Cambridge University Press, Cambridge, MA, 1998), pp. 88–92.
6.
H. Poincaré, New Methods of Celestial Mechanics, originally published as Les Méthodes Nouvelles de la Méchanique Célèste (Gauthier-Villars, Paris, 1892) (American Institute of Physics, New York, 1993).
7.
A.
Lindstedt
, “
Über die integration einer für die störungstheorie wichtigen differentialgleichung
,”
Astron. Nachr.
103
,
211
220
(
1882
).
8.
L. D. Landau and E. M. Lifshitz, Mechanics (Pergamon, Oxford, 1960).
9.
A. H. Nayfeh, Introduction to Perturbation Techniques (Wiley, New York, 1981).
10.
C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, New York, 1978).
11.
J. Kevorkian and J. D. Cole, Perturbation Methods in Applied Mathematics (Springer-Verlag, New York, 1985).
12.
J. A. Murdock, Perturbations Theory and Methods (Wiley, New York, 1991).
13.
J. Kevorkian and J. D. Cole, Multiple Scale and Singular Perturbation Methods (Springer-Verlag, New York, 1996).
14.
G. I.
Hori
, “
Theory of general perturbations with unspecified canonical variables
,”
Publ. Astron. Soc. Jpn.
18
,
287
296
(
1966
).
15.
G. I.
Hori
, “
Theory of general perturbations for non-canonical systems
,”
Publ. Astron. Soc. Jpn.
23
,
567
587
(
1971
).
16.
V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations (Springer-Verlag, New York, 1988).
17.
P. B. Kahn and Y. Zarmi, Nonlinear Dynamics: Exploration Through Normal Forms (Wiley, New York, 1998).
18.
J. A. Sanders and F. Verhulst, Averaging Method in Nonlinear Dynamical Systems (Springer-Verlag, New York, 1985).
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.