The resistance between arbitrary nodes of an infinite network of resistors is calculated when the network is perturbed by removing one bond from the perfect lattice. A relation is given between the resistance and the lattice Green’s function of the perturbed resistor network. By solving the Dyson equation, the Green’s function and the resistance of the perturbed lattice are expressed in terms of those of the perfect lattice. Numerical results are presented for a square lattice.

1.
B. van der Pol and H. Bremmer, Operational Calculus Based on the Two-Sided Laplace Integral (Cambridge U.P., Cambridge, 1955), 2nd ed., p. 372.
2.
P. G. Doyle and J. L. Snell, Random Walks and Electric Networks, The Carus Mathematical Monograph, Series 22 (The Mathematical Association of America, 1984), pp. 83–149.
3.
G.
Venezian
, “
On the resistance between two points on a grid
,”
Am. J. Phys.
62
,
1000
1004
(
1994
).
4.
D.
Atkinson
and
F. J.
van Steenwijk
, “
Infinite resistive lattices
,”
Am. J. Phys.
67
,
486
492
(
1999
).
5.
J.
Cserti
, “
Application of the lattice Green’s function for calculating the resistance of an infinite network of resistors
,”
Am. J. Phys.
68
,
896
906
(
2000
).
6.
E. N. Economou, Green’s Functions in Quantum Physics (Springer-Verlag, Berlin, 1983), 2nd ed.
7.
S.
Katsura
,
T.
Morita
,
S.
Inawashiro
,
T.
Horiguchi
, and
Y.
Abe
, “
Lattice Green’s Function. Introduction
,”
J. Math. Phys.
12
,
892
895
(
1971
).
8.
R. E.
Aitchison
, “
Resistance between adjacent points of Liebman mesh
,”
Am. J. Phys.
32
,
566
(
1964
).
9.
S.
Kirkpatrick
, “
Percolation and Conduction
,”
Rev. Mod. Phys.
45
,
574
588
(
1973
).
10.
F. Schwabl, Quantum Mechanics (Springer-Verlag, Berlin, 1988).
11.
K.
Wu
and
R. M.
Bradley
, “
Efficient Green’s-function approach to finding the currents in a random resistor network
,”
Phys. Rev. E
49
,
1712
1725
(
1994
).
12.
M. L.
Glasser
and
J.
Boersma
, “
Exact values for the cubic lattice Green functions
,”
J. Phys. A
33
,
5017
5023
(
2000
).
13.
J.
Koplik
, “
On the effective medium theory of random linear networks
,”
J. Phys. C
14
,
4821
4837
(
1981
).
14.
S.
Redner
, “
Conductivity of random resistor-diode networks
,”
Phys. Rev. B
25
,
5646
5655
(
1982
).
15.
P. M.
Duxbury
,
P. L.
Leath
, and
P. D.
Beale
, “
Breakdown properties of quenched random systems: The random-fuse network
,”
Phys. Rev. B
36
,
367
380
(
1987
).
16.
J.
Boksiner
and
P. L.
Leath
, “
Dielectric breakdown in media with defects
,”
Phys. Rev. E
57
,
3531
3541
(
1998
).
17.
P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge U.P., Cambridge, 1995), Chap. 2;
J. M. Ziman, Principles of The Theory of Solids (Cambridge U.P., Cambridge, 1972), Chap. 1;
N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, PA, 1976), Chap. 4;
C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1986), 6th ed., pp. 37–42.
18.
M.
Jeng
, “
Random walks and effective resistances on toroidal and cylindrical grids
,”
Am. J. Phys.
68
,
37
40
(
2000
).
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.