We provide an algebraic proof of the fact that Fermat’s principle of least time implies Snell’s law. This proof is closer to Fermat’s original approach than the usual calculus-based developments of the subject.

## REFERENCES

1.

A. I. Sabra,

*Theories of Light*(Cambridge U.P., Cambridge, 1981), p. 69.2.

M. M. Schiffer and L. Bowden,

*The Role of Mathematics in Science*(The Mathematical Association of America, Washington, DC, 1984), pp. 82–84.3.

W. B.

Joyce

and A.

Joyce

, “Descartes, Newton, and Snell’s law

,” J. Opt. Soc. Am.

66

(1

), 1

–8

(1976

).4.

J. W.

Shirley

, “An early experimental determination of Snell’s law

,” Am. J. Phys.

19

, 507

–508

(1951

).5.

Reference 1, p. 111.

6.

Reference 1, pp. 149–150.

7.

Reference 2, pp. 91–95.

8.

M. V. Klein and T. E. Furtak,

*Optics*(Wiley, New York, 1986), 2nd ed., p. 35.9.

Reference 1, pp. 145–148.

10.

See, for instance, Ref. 2, pp. 84–91;

A. Nussbaum,

*Geometric Optics: An Introduction*(Addison–Wesley, Reading, MA, 1968), pp. 17–19;M.

Golomb

, “Elementary proofs for the equivalence of Fermat’s principle and Snell’s law

,” Am. Math. Monthly

71

, 542

–543

(1964

);J. W. Blaker,

*Geometric Optics; The Matrix Theory*(Dekker, New York, 1971), pp. 5–6.11.

H.

Helfgott

and M.

Helfgott

, “Maxima and minima before calculus

,” Pro Mathematica

12

(23-24

), 135

–158

(1998

).12.

This way of proving an equality was one of Archimedes’ favorite tools. See W. Dunham,

*Journey Through Genius*(Penguin, New York, 1990), p. 92.13.

This inequality is valid because $(a+b\u2212a)(a+b+a)=b+a\u2212a=b.$ Thus $a+b\u2212a=b/(a+b+a)<b/a.$

14.

*The History of Mathematics: A Reader*, edited by J. Fauvel and J. Gray (MacMillan Education, London, 1987), pp. 432–433.

15.

See, for instance, G. F. Simmons,

*Calculus with Analytic Geometry*(McGraw–Hill, New York, 1985), pp. 106–107.16.

M.

Helfgott

, “Computer technologies and the phenomenon of refraction

,” Phys. Teach.

36

(5

), 236

–238

(1998

).
This content is only available via PDF.

© 2002 American Association of Physics Teachers.

2002

American Association of Physics Teachers

AAPT members receive access to the

*American Journal of Physics*and*The Physics Teacher*as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.