Synchronization is a common phenomenon in physical and biological systems. We examine the synchronization of two (and more) metronomes placed on a freely moving base. The small motion of the base couples the pendulums causing synchronization. The synchronization is generally in-phase, with antiphase synchronization occurring only under special conditions. The metronome system provides a mechanical realization of the popular Kuramoto model for synchronization of biological oscillators, and is excellent for classroom demonstrations and an undergraduate physics lab.
REFERENCES
1.
R. C.
Hilborn
and N. B.
Tufillaro
, “Resource Letter: ND-1: Nonlinear dynamics
,” Am. J. Phys.
65
, 822
–834
(1997
).2.
H. H.
Strogatz
and I.
Stewart
, “Coupled oscillators and biological synchronization
,” Sci. Am.
269
, 102
–109
(1993
).3.
S. H.
Strogatz
, “Norbert Wiener’s brain waves
,” Lect. Notes Biomath.
100
, 122
–138
(1994
).4.
See J. Cooley and D. Marshall, “Periodical cicada Page,” University of Michigan Museum of Zoology, http://www.ummz.lsa.umich.edu/magicicada/Periodical/;
F. C.
Hoppenstedt
and J. B.
Keller
, “Synchronization of periodical cicada emergences
,” Science
194
, 335
–337
(1976
).5.
D. Attenborough, “The Trials of Life: Talking to Strangers” (BBC-TV, 1991), available from Turner Home Entertainment.
6.
D. C.
Michaels
, E. P.
Matyas
, and J.
Jalife
, “Mechanisms of sinoatrial pacemaker synchronization: A new hypothesis
,” Circ. Res.
61
, 704
–714
(1987
).7.
Z.
Neda
, E.
Ravasz
, Y.
Brechet
, T.
Vicsek
, and A.-L.
Barabasi
, “Self-organizing processes: The sound of many hands clapping
,” Nature (London)
403
, 849
–850
(2000
).8.
K.
Wiesenfeld
, P.
Colet
, and S. H.
Strogatz
, “Synchronization transitions in a disordered Josephson series array
,” Phys. Rev. Lett.
76
, 404
–407
(1996
).9.
T.
Heath
and K.
Wiesenfeld
, “Mutual entrainment of two nonlinear oscillators
,” Am. J. Phys.
66
, 860
–866
(1998
).10.
V. A.
Kostelecky
, J.
Pantaleone
, and S.
Samuel
, “Neutrino oscillation in the early universe
,” Phys. Lett. B
315
, 46
–50
(1993
);J.
Pantaleone
, “Stability of incoherence in an isotropic gas of oscillating neutrinos
,” Phys. Rev. D
58
, 073002
-1
073002
-14
(1998
).11.
L. M.
Pecora
and T. L.
Carroll
, “Synchronization in chaotic systems
,” Phys. Rev. Lett.
64
, 821
–824
(1990
);A. S.
Pikovsky
, “On the interaction of strange attractors
,” Z. Phys. B: Condens. Matter
55
, 149
–154
(1984
);M. G.
Rosenblum
, A. S.
Pikovsky
, and J.
Kurths
, “Phase synchronization of chaotic oscillators
,” Phys. Rev. Lett.
76
, 1804
–1807
(1996
).12.
C. Hugenii, Horoloquim Oscilatorium (Apud F. Muguet, Paris, France, 1673);
English translation, The Pendulum Clock (Iowa State University Press, Ames, Iowa, 1986).
13.
Navigation at sea was extremely difficult for many centuries until reliable clocks were developed in the late 1700s. See, for example, D. Sobel, Longitude (Walker and Co., New York, 1995).
14.
B.
Bennett
, M. F.
Schatz
, H.
Rockwood
, and K.
Wisenfeld
, “Huygens’ clocks
,” Proc. R. Soc. London, Ser. A
458
, 563
–579
(2002
).15.
D. J. Kortweg, “Les Horloges Sympathiques de Huygens” (Archives Neerlandaises, Serie II. Tome XI, Martinus Nijhoff, The Hague, 1906), pp. 273–295.
16.
I. I. Blekhman, Synchronization in Science and Technology (ASME, New York, 1988).
17.
B.
van der Pol
, “Forced oscillators in a circuit with non-linear resistance
,” Philos. Mag.
3
, 64
–80
(1927
).18.
A. T.
Winfree
, “Biological rhythms and the behavior of populations of coupled oscillators
,” J. Theor. Biol.
16
, 15
–42
(1967
).19.
Y. Kuramoto, Chemical Oscillations, Waves and Turbulence (Springer, Berlin, 1984).
20.
The escapement controls the speed and regularity of the pendulum. It transfers the energy stored in the spring to the motion of the pendulum by means of wheels, gears, and ratchets.
21.
S. H. Strogatz, Nonlinear Dynamics and Chaos (Perseus Publishing, Cambridge, 1994).
22.
G. R. Fowles, Analytical Mechanics (Holt Rinehart and Winston, New York, 1977).
23.
PASCO Scientific, http://www.pasco.com/
24.
Y.
Kuramoto
and J.
Nishikawa
, “Statistical macrodynamics of large dynamical systems
,” J. Stat. Phys.
49
, 569
–605
(1987
);S. H.
Strogatz
and R. E.
Mirollo
, “Stability of incoherence in a population of coupled oscillators
,” J. Stat. Phys.
63
, 613
–635
(1991
);L. L.
Bonilla
, J. C.
Neu
, and R.
Spigler
, “Nonlinear stability of incoherence and collective synchronization in a population of coupled oscillators
,” J. Stat. Phys.
67
, 313
–330
(1992
);H.
Daido
, “Generic scaling at the onset of macroscopic mutual entrainment in limit-cycle oscillators with uniform all-to-all coupling
,” Phys. Rev. Lett.
73
, 760
–763
(1994
);J. D.
Crawford
, “Amplitude expansion for instabilities in populations of globally-coupled oscillators
,” J. Stat. Phys.
74
, 1047
–1084
(1994
).25.
S. H.
Strogatz
, “From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators
,” Physica D
143
, 1
–20
(2000
).26.
J. Pantaleone (unpublished).
This content is only available via PDF.
© 2002 American Association of Physics Teachers.
2002
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.