Synchronization is a common phenomenon in physical and biological systems. We examine the synchronization of two (and more) metronomes placed on a freely moving base. The small motion of the base couples the pendulums causing synchronization. The synchronization is generally in-phase, with antiphase synchronization occurring only under special conditions. The metronome system provides a mechanical realization of the popular Kuramoto model for synchronization of biological oscillators, and is excellent for classroom demonstrations and an undergraduate physics lab.

1.
R. C.
Hilborn
and
N. B.
Tufillaro
, “
Resource Letter: ND-1: Nonlinear dynamics
,”
Am. J. Phys.
65
,
822
834
(
1997
).
2.
H. H.
Strogatz
and
I.
Stewart
, “
Coupled oscillators and biological synchronization
,”
Sci. Am.
269
,
102
109
(
1993
).
3.
S. H.
Strogatz
, “
Norbert Wiener’s brain waves
,”
Lect. Notes Biomath.
100
,
122
138
(
1994
).
4.
See J. Cooley and D. Marshall, “Periodical cicada Page,” University of Michigan Museum of Zoology, http://www.ummz.lsa.umich.edu/magicicada/Periodical/;
F. C.
Hoppenstedt
and
J. B.
Keller
, “
Synchronization of periodical cicada emergences
,”
Science
194
,
335
337
(
1976
).
5.
D. Attenborough, “The Trials of Life: Talking to Strangers” (BBC-TV, 1991), available from Turner Home Entertainment.
6.
D. C.
Michaels
,
E. P.
Matyas
, and
J.
Jalife
, “
Mechanisms of sinoatrial pacemaker synchronization: A new hypothesis
,”
Circ. Res.
61
,
704
714
(
1987
).
7.
Z.
Neda
,
E.
Ravasz
,
Y.
Brechet
,
T.
Vicsek
, and
A.-L.
Barabasi
, “
Self-organizing processes: The sound of many hands clapping
,”
Nature (London)
403
,
849
850
(
2000
).
8.
K.
Wiesenfeld
,
P.
Colet
, and
S. H.
Strogatz
, “
Synchronization transitions in a disordered Josephson series array
,”
Phys. Rev. Lett.
76
,
404
407
(
1996
).
9.
T.
Heath
and
K.
Wiesenfeld
, “
Mutual entrainment of two nonlinear oscillators
,”
Am. J. Phys.
66
,
860
866
(
1998
).
10.
V. A.
Kostelecky
,
J.
Pantaleone
, and
S.
Samuel
, “
Neutrino oscillation in the early universe
,”
Phys. Lett. B
315
,
46
50
(
1993
);
J.
Pantaleone
, “
Stability of incoherence in an isotropic gas of oscillating neutrinos
,”
Phys. Rev. D
58
,
073002
-
1
073002
-
14
(
1998
).
11.
L. M.
Pecora
and
T. L.
Carroll
, “
Synchronization in chaotic systems
,”
Phys. Rev. Lett.
64
,
821
824
(
1990
);
A. S.
Pikovsky
, “
On the interaction of strange attractors
,”
Z. Phys. B: Condens. Matter
55
,
149
154
(
1984
);
M. G.
Rosenblum
,
A. S.
Pikovsky
, and
J.
Kurths
, “
Phase synchronization of chaotic oscillators
,”
Phys. Rev. Lett.
76
,
1804
1807
(
1996
).
12.
C. Hugenii, Horoloquim Oscilatorium (Apud F. Muguet, Paris, France, 1673);
English translation, The Pendulum Clock (Iowa State University Press, Ames, Iowa, 1986).
13.
Navigation at sea was extremely difficult for many centuries until reliable clocks were developed in the late 1700s. See, for example, D. Sobel, Longitude (Walker and Co., New York, 1995).
14.
B.
Bennett
,
M. F.
Schatz
,
H.
Rockwood
, and
K.
Wisenfeld
, “
Huygens’ clocks
,”
Proc. R. Soc. London, Ser. A
458
,
563
579
(
2002
).
15.
D. J. Kortweg, “Les Horloges Sympathiques de Huygens” (Archives Neerlandaises, Serie II. Tome XI, Martinus Nijhoff, The Hague, 1906), pp. 273–295.
16.
I. I. Blekhman, Synchronization in Science and Technology (ASME, New York, 1988).
17.
B.
van der Pol
, “
Forced oscillators in a circuit with non-linear resistance
,”
Philos. Mag.
3
,
64
80
(
1927
).
18.
A. T.
Winfree
, “
Biological rhythms and the behavior of populations of coupled oscillators
,”
J. Theor. Biol.
16
,
15
42
(
1967
).
19.
Y. Kuramoto, Chemical Oscillations, Waves and Turbulence (Springer, Berlin, 1984).
20.
The escapement controls the speed and regularity of the pendulum. It transfers the energy stored in the spring to the motion of the pendulum by means of wheels, gears, and ratchets.
21.
S. H. Strogatz, Nonlinear Dynamics and Chaos (Perseus Publishing, Cambridge, 1994).
22.
G. R. Fowles, Analytical Mechanics (Holt Rinehart and Winston, New York, 1977).
23.
PASCO Scientific, http://www.pasco.com/
24.
Y.
Kuramoto
and
J.
Nishikawa
, “
Statistical macrodynamics of large dynamical systems
,”
J. Stat. Phys.
49
,
569
605
(
1987
);
S. H.
Strogatz
and
R. E.
Mirollo
, “
Stability of incoherence in a population of coupled oscillators
,”
J. Stat. Phys.
63
,
613
635
(
1991
);
L. L.
Bonilla
,
J. C.
Neu
, and
R.
Spigler
, “
Nonlinear stability of incoherence and collective synchronization in a population of coupled oscillators
,”
J. Stat. Phys.
67
,
313
330
(
1992
);
H.
Daido
, “
Generic scaling at the onset of macroscopic mutual entrainment in limit-cycle oscillators with uniform all-to-all coupling
,”
Phys. Rev. Lett.
73
,
760
763
(
1994
);
J. D.
Crawford
, “
Amplitude expansion for instabilities in populations of globally-coupled oscillators
,”
J. Stat. Phys.
74
,
1047
1084
(
1994
).
25.
S. H.
Strogatz
, “
From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators
,”
Physica D
143
,
1
20
(
2000
).
26.
J. Pantaleone (unpublished).
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.