REFERENCES
1.
Y.
Zarmi
, “The Bertrand theorem revisited
,” Am. J. Phys.
70
, 446
–449
(2002
).2.
M.
Berrondo
, J.
Flores
, and O.
Novaro
, “La magia de las órbitas elı́pticas
,” Rev. Mex. Fis.
23
, E13
–E26
(1974
).3.
J. L.
Castro-Quilantán
, J. L.
Del Rı́o-Correa
, and M. A.
Rosales
, “Alternative proof of Bertrand’s theorem
,” Rev. Mex. Fis.
42
, 844
–866
(1996
);M. A.
Rosales
, J. L.
Del Rı́o-Correa
, and J. L.
Castro-Quilantán
, “Phase space approach to the orbits in central force fields
,” Rev. Mex. Fis.
42
, 349
–359
(1996
).4.
V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer-Verlag, New York, 1978), pp. 37–38.
5.
R. P.
Martı́nez-y-Romero
, H. N.
Núñez-Yépez
, and A. L.
Salas-Brito
, “Closed orbits and constants of motion in classical mechanics
,” Eur. J. Phys.
13
, 26
–31
(1992
).6.
A. L.
Salas-Brito
, H. N.
Núñez-Yépez
, and R. P.
Martı́nez-y-Romero
, “Superintegrability in classical mechanics: A contemporary approach to Bertrand’s theorem
,” Int. J. Mod. Phys. A
12
, 271
–276
(1997
).7.
R. P.
Martı́nez-y-Romero
, H. N.
Núñez-Yépez
, and A. L.
Salas-Brito
, “The Hamilton vector as an extra constant of motion in Kepler problem
,” Eur. J. Phys.
14
, 71
–73
(1993
).8.
H.
Kaplan
, “The Runge–Lenz vector as an ‘extra’ constant of the motion
,” Am. J. Phys.
54
, 157
–161
(1986
).9.
H. V. McIntosh, “Symmetry and degeneracy,” in Group Theory and its Applications, edited by E. M. Loebl (Academic, New York, 1971), Vol. II, p. 82.
This content is only available via PDF.
© 2002 American Association of Physics Teachers.
2002
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.