We solve the one-dimensional nonlinear Schrödinger equation for an attractive delta-function potential at the origin, and obtain the bound state in closed form as a function of the nonlinear exponent α. The bound state probability profile decays exponentially away from the origin, with a profile width that increases monotonically with α, becoming an almost completely extended state when At α=2, the bound state suffers a discontinuous change to a delta function-like profile. A further increase of α increases the width of the probability profile, although the bound state is stable only for α<2. The transmission of plane waves across the potential increases monotonically with α and is insensitive to the sign of the opacity Ω.
REFERENCES
1.
A.
Rabinovitch
, “Negative energy states of an ‘inverted’ delta potential: Influence of boundary conditions
,” Am. J. Phys.
53
, 768
–773
(1985
).2.
C.
Aslangul
, “δ-well with a reflecting barrier
,” Am. J. Phys.
63
, 935
–940
(1995
).3.
H.
Massmann
, “Illustration of resonances and the law of exponential decay in a simple quantum-mechanical problem
,” Am. J. Phys.
53
, 679
–683
(1985
);C. DeW.
Van Siclen
, “Scattering from an attractive delta-function potential
,” Am. J. Phys.
56
, 278
–280
(1988
).4.
See, for instance,
D. A.
Atkinson
, “An exact treatment of the Dirac delta function potential in the Schrödinger equation
,” Am. J. Phys.
43
, 301
–304
(1975
);M.
Lieber
, “Quantum mechanics in momentum space: An illustration
,” Am. J. Phys.
43
, 486
–491
(1975
);A. K.
Jain
, S. K.
Deb
, and C. S.
Shastry
, “The problem of several delta-shell potentials in the Lipmann-Schwinger formulation
,” Am. J. Phys.
46
, 147
–151
(1978
);D.
Lessie
, and J.
Spadaro
, “One-dimensional multiple scattering in quantum mechanics
,” Am. J. Phys.
54
, 909
–913
(1986
);D. W. L.
Sprung
, Hua
Wu
, and J.
Martorell
, “Scattering by a finite periodic potential
,” Am. J. Phys.
61
, 1118
–1124
(1993
);I.
Mitra
, A.
DasGupta
, and B.
Dutta-Roy
, “Regularization and renormalization in scattering from Dirac delta potentials
,” Am. J. Phys.
66
, 1101
–1109
(1998
).5.
A. Messiah, Quantum Mechanics (Wiley, New York, 1968).
6.
H. J.
Davies
, and C. S.
Adams
, “Mean-field model of a weakly interacting Bose condensate in a harmonic potential
,” Phys. Rev. A
55
, 2527
–2530
(1997
).7.
D.
Chen
, M. I.
Molina
, and G. P.
Tsironis
, “Non-adiabatic non-linear impurities in linear hosts
,” J. Phys.: Condens. Matter
5
, 8689
–8702
(1993
).8.
T.
Holstein
, “Studies of polaron motion. I. The molecular-crystal model
,” Ann. Phys. (N.Y.)
8
, 325
–342
(1959
).9.
A. S. Davydov, Theory of Molecular Excitons (Plenum, New York, 1971);
A. S. Davydov, Biology and Quantum Mechanics (Pergamon, Oxford, 1982).
10.
P. L. Christiansen and A. C. Scott, Davydov’s Soliton Revisited (Plenum, New York, 1990).
11.
J. C.
Eilbeck
, P. S.
Lomdahl
, and A. C.
Scott
, “The discrete self-trapping equation
,” Physica D
16
, 318
–338
(1985
).12.
P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).
13.
D.
Hennig
, G. P.
Tsironis
, M.
Molina
, and H.
Gabriel
, “A nonlinear quasiperiodic Kronig–Penney model
,” Phys. Lett. A
190
, 259
–263
(1994
);D.
Hennig
, H.
Gabriel
, G. P.
Tsironis
, and M.
Molina
, “Wave propagation in periodic nonlinear dielectric superlattices
,” Appl. Phys. Lett.
64
, 2934
–2936
(1994
);N.
Sun
, D.
Hennig
, M. I.
Molina
, and G. P.
Tsironis
, “Wave propagation in a nonlinear quasiperiodic Kronig-Penney lattice
,” J. Phys.: Condens. Matter
6
, 7741
–7749
(1994
);D.
Hennig
, and G. P.
Tsironis
, “Wave transmission in nonlinear lattices
,” Phys. Rep.
307
, 333
–432
(1999
).14.
C. Sulem and P.-L. Sulem, Nonlinear Schroedinger Equations: Self-Focussing and Wave Collapse (Springer-Verlag, Berlin, 1999).
This content is only available via PDF.
© 2002 American Association of Physics Teachers.
2002
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.