We solve the one-dimensional nonlinear Schrödinger equation for an attractive delta-function potential at the origin, [(p2/2m)−Ωδ(x)|φ(x)|α]φ(x)=Eφ(x), and obtain the bound state in closed form as a function of the nonlinear exponent α. The bound state probability profile decays exponentially away from the origin, with a profile width that increases monotonically with α, becoming an almost completely extended state when α→2. At α=2, the bound state suffers a discontinuous change to a delta function-like profile. A further increase of α increases the width of the probability profile, although the bound state is stable only for α<2. The transmission of plane waves across the potential increases monotonically with α and is insensitive to the sign of the opacity Ω.

1.
A.
Rabinovitch
, “
Negative energy states of an ‘inverted’ delta potential: Influence of boundary conditions
,”
Am. J. Phys.
53
,
768
773
(
1985
).
2.
C.
Aslangul
, “
δ-well with a reflecting barrier
,”
Am. J. Phys.
63
,
935
940
(
1995
).
3.
H.
Massmann
, “
Illustration of resonances and the law of exponential decay in a simple quantum-mechanical problem
,”
Am. J. Phys.
53
,
679
683
(
1985
);
C. DeW.
Van Siclen
, “
Scattering from an attractive delta-function potential
,”
Am. J. Phys.
56
,
278
280
(
1988
).
4.
See, for instance,
D. A.
Atkinson
, “
An exact treatment of the Dirac delta function potential in the Schrödinger equation
,”
Am. J. Phys.
43
,
301
304
(
1975
);
M.
Lieber
, “
Quantum mechanics in momentum space: An illustration
,”
Am. J. Phys.
43
,
486
491
(
1975
);
A. K.
Jain
,
S. K.
Deb
, and
C. S.
Shastry
, “
The problem of several delta-shell potentials in the Lipmann-Schwinger formulation
,”
Am. J. Phys.
46
,
147
151
(
1978
);
D.
Lessie
, and
J.
Spadaro
, “
One-dimensional multiple scattering in quantum mechanics
,”
Am. J. Phys.
54
,
909
913
(
1986
);
D. W. L.
Sprung
,
Hua
Wu
, and
J.
Martorell
, “
Scattering by a finite periodic potential
,”
Am. J. Phys.
61
,
1118
1124
(
1993
);
I.
Mitra
,
A.
DasGupta
, and
B.
Dutta-Roy
, “
Regularization and renormalization in scattering from Dirac delta potentials
,”
Am. J. Phys.
66
,
1101
1109
(
1998
).
5.
A. Messiah, Quantum Mechanics (Wiley, New York, 1968).
6.
H. J.
Davies
, and
C. S.
Adams
, “
Mean-field model of a weakly interacting Bose condensate in a harmonic potential
,”
Phys. Rev. A
55
,
2527
2530
(
1997
).
7.
D.
Chen
,
M. I.
Molina
, and
G. P.
Tsironis
, “
Non-adiabatic non-linear impurities in linear hosts
,”
J. Phys.: Condens. Matter
5
,
8689
8702
(
1993
).
8.
T.
Holstein
, “
Studies of polaron motion. I. The molecular-crystal model
,”
Ann. Phys. (N.Y.)
8
,
325
342
(
1959
).
9.
A. S. Davydov, Theory of Molecular Excitons (Plenum, New York, 1971);
A. S. Davydov, Biology and Quantum Mechanics (Pergamon, Oxford, 1982).
10.
P. L. Christiansen and A. C. Scott, Davydov’s Soliton Revisited (Plenum, New York, 1990).
11.
J. C.
Eilbeck
,
P. S.
Lomdahl
, and
A. C.
Scott
, “
The discrete self-trapping equation
,”
Physica D
16
,
318
338
(
1985
).
12.
P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).
13.
D.
Hennig
,
G. P.
Tsironis
,
M.
Molina
, and
H.
Gabriel
, “
A nonlinear quasiperiodic Kronig–Penney model
,”
Phys. Lett. A
190
,
259
263
(
1994
);
D.
Hennig
,
H.
Gabriel
,
G. P.
Tsironis
, and
M.
Molina
, “
Wave propagation in periodic nonlinear dielectric superlattices
,”
Appl. Phys. Lett.
64
,
2934
2936
(
1994
);
N.
Sun
,
D.
Hennig
,
M. I.
Molina
, and
G. P.
Tsironis
, “
Wave propagation in a nonlinear quasiperiodic Kronig-Penney lattice
,”
J. Phys.: Condens. Matter
6
,
7741
7749
(
1994
);
D.
Hennig
, and
G. P.
Tsironis
, “
Wave transmission in nonlinear lattices
,”
Phys. Rep.
307
,
333
432
(
1999
).
14.
C. Sulem and P.-L. Sulem, Nonlinear Schroedinger Equations: Self-Focussing and Wave Collapse (Springer-Verlag, Berlin, 1999).
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.