We find a close correspondence between the partition functions of ideal quantum gases and certain symmetric polynomials. From this correspondence, it can be shown that a number of thermodynamic identities that have recently been considered in the literature are essentially of combinatorial origin and have been known for a long time as theorems on symmetric polynomials. For example, a recurrence relation for partition functions in the textbook by P. Landsberg is Newton’s identity in disguised form. Conversely, a theorem on symmetric polynomials translates into a new and unexpected relation between fermion and boson partition functions, which can be used to express the former by means of the latter and vice versa.

1.
M. H.
Lee
, “
Polylogarithmic analysis of chemical-potential and fluctuations in a d-dimensional free Fermi gas at low temperatures
,”
J. Math. Phys.
36
,
1217
1231
(
1995
).
2.
M. H.
Lee
, “
Statistical mechanics of ideal particles in null dimension and confinement
,”
Phys. Rev. E
54
,
946
949
(
1996
).
3.
M. H.
Lee
, “
Equivalence of ideal gases in two dimensions and Landen’s relations
,”
Phys. Rev. E
55
,
1518
1520
(
1997
).
4.
M. H.
Lee
, “
Polylogarithms and Riemann’s ζ function
,”
Phys. Rev. E
56
,
3909
3912
(
1997
).
5.
H.-J.
Schmidt
and
J.
Schnack
, “
Thermodynamic fermion-boson symmetry in harmonic oscillator potentials
,”
Physica A
265
,
584
589
(
1999
).
6.
P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer, New York, 1980).
7.
S.
Tomonaga
, “
Remark on Bloch’s method of sound waves applied to many fermion problems
,”
Prog. Theor. Phys.
5
,
544
569
(
1950
).
8.
J.
Luttinger
, “
An exactly soluble model of a many-fermion system
,”
J. Math. Phys.
4
,
1154
1162
(
1963
).
9.
K.
Schönhammer
and
V.
Meden
, “
Fermion-boson transmutation and comparison of statistical ensembles in one dimension
,”
Am. J. Phys.
64
,
1168
1176
(
1996
).
10.
H.-J.
Schmidt
and
J.
Schnack
, “
Investigations on finite ideal quantum gases
,”
Physica A
260
,
479
489
(
1998
).
11.
M.
Crescimanno
and
A. S.
Landsberg
, “
Spectral equivalence of bosons and fermions in one-dimensional harmonic potentials
,”
Phys. Rev. A
63
,
035601
(
2001
).
12.
M.
Anderson
,
J.
Ensher
,
M.
Matthews
,
C.
Wieman
, and
E.
Cornell
, “
Observation of Bose–Einstein condensation in a dilute atomic vapour
,”
Science
269
,
198
201
(
1995
).
13.
K.
Davis
,
M.-O.
Mewes
,
M.
Andrews
,
N. van
Druten
,
D.
Durfee
,
D.
Kurn
, and
W.
Ketterle
, “
Bose–Einstein condensation of a gas of sodium atoms
,”
Phys. Rev. Lett.
75
,
3969
3973
(
1995
).
14.
W.
Ketterle
and
N. van
Druten
, “
Bose–Einstein condensation of a finite number of particles trapped in one or three dimensions
,”
Phys. Rev. A
54
,
656
660
(
1996
).
15.
C.
Bradley
,
C.
Sackett
, and
R.
Hulet
, “
Bose–Einstein condensation of lithium: Observation of limited condensate number
,”
Phys. Rev. Lett.
78
,
985
989
(
1997
).
16.
F.
Dalfovo
,
S.
Giorgini
,
L. P.
Pitaevskii
, and
S.
Stringari
, “
Theory of Bose–Einstein condensation in trapped gases
,”
Rev. Mod. Phys.
71
,
463
512
(
1999
).
17.
Y.
Alhassid
, “
The statistical theory of quantum dots
,”
Rev. Mod. Phys.
72
,
895
968
(
2000
).
18.
J.
Arnaud
,
L.
Chusseau
, and
F.
Philippe
, “
Fluorescence from a few electrons
,”
Phys. Rev. B
62
,
13482
13489
(
2000
).
19.
P. T.
Landsberg
and
P.
Harshman
, “
Canonical versus grand canonical occupation numbers for simple systems
,”
J. Stat. Phys.
53
,
475
482
(
1988
).
20.
P.
Borrmann
and
G.
Franke
, “
Recursion formulas for quantum statistical partition functions
,”
J. Chem. Phys.
98
,
2484
2485
(
1993
).
21.
F.
Brosens
,
L.
Lemmens
, and
J. T.
Devreese
, “
Thermodynamics of coupled identical oscillators within the path integral formalism
,”
Phys. Rev. E
55
,
227
236
(
1997
).
22.
P. T. Landsberg, Thermodynamics with Quantum Statistical Illustrations (Interscience, New York, 1961).
23.
D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms (Springer, New York, 1992).
24.
I. G. Macdonald, Symmetric Functions and Hall Polynomials (Clarendon, Oxford, 1979).
25.
S.
Grossmann
and
M.
Holthaus
, “
Fluctuations of the particle number in a trapped Bose–Einstein condensate
,”
Phys. Rev. Lett.
79
,
3557
3560
(
1997
).
26.
M.
Wilkens
and
C.
Weiss
, “
Particle number fluctuations in an ideal Bose gas
,”
J. Mod. Opt.
44
,
1801
1814
(
1997
).
27.
S.
Katsura
, “
On the Bose–Einstein condensation
,”
Prog. Theor. Phys.
16
,
689
703
(
1956
).
28.
C. N.
Yang
and
T. D.
Lee
, “
Statistical theory of equations of state and phase transitions. I. Theory of condensation
,”
Phys. Rev.
87
,
404
409
(
1952
);
C. N.
Yang
and
T. D.
Lee
, “
Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model
,”
Phys. Rev.
87
,
410
419
(
1952
).
29.
C. G.
Darwin
and
R. H.
Fowler
, “
On the partition of energy
,”
Philos. Mag.
44
,
450
479
(
1922
).
30.
S.
Meljanac
,
M.
Stojić
, and
D.
Svrtan
, “
Partition functions for general multi-level systems
,”
Phys. Lett. A
224
,
319
325
(
1997
).
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.