We find a close correspondence between the partition functions of ideal quantum gases and certain symmetric polynomials. From this correspondence, it can be shown that a number of thermodynamic identities that have recently been considered in the literature are essentially of combinatorial origin and have been known for a long time as theorems on symmetric polynomials. For example, a recurrence relation for partition functions in the textbook by P. Landsberg is Newton’s identity in disguised form. Conversely, a theorem on symmetric polynomials translates into a new and unexpected relation between fermion and boson partition functions, which can be used to express the former by means of the latter and vice versa.
REFERENCES
1.
M. H.
Lee
, “Polylogarithmic analysis of chemical-potential and fluctuations in a -dimensional free Fermi gas at low temperatures
,” J. Math. Phys.
36
, 1217
–1231
(1995
).2.
M. H.
Lee
, “Statistical mechanics of ideal particles in null dimension and confinement
,” Phys. Rev. E
54
, 946
–949
(1996
).3.
M. H.
Lee
, “Equivalence of ideal gases in two dimensions and Landen’s relations
,” Phys. Rev. E
55
, 1518
–1520
(1997
).4.
M. H.
Lee
, “Polylogarithms and Riemann’s ζ function
,” Phys. Rev. E
56
, 3909
–3912
(1997
).5.
H.-J.
Schmidt
and J.
Schnack
, “Thermodynamic fermion-boson symmetry in harmonic oscillator potentials
,” Physica A
265
, 584
–589
(1999
).6.
P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer, New York, 1980).
7.
S.
Tomonaga
, “Remark on Bloch’s method of sound waves applied to many fermion problems
,” Prog. Theor. Phys.
5
, 544
–569
(1950
).8.
J.
Luttinger
, “An exactly soluble model of a many-fermion system
,” J. Math. Phys.
4
, 1154
–1162
(1963
).9.
K.
Schönhammer
and V.
Meden
, “Fermion-boson transmutation and comparison of statistical ensembles in one dimension
,” Am. J. Phys.
64
, 1168
–1176
(1996
).10.
H.-J.
Schmidt
and J.
Schnack
, “Investigations on finite ideal quantum gases
,” Physica A
260
, 479
–489
(1998
).11.
M.
Crescimanno
and A. S.
Landsberg
, “Spectral equivalence of bosons and fermions in one-dimensional harmonic potentials
,” Phys. Rev. A
63
, 035601
(2001
).12.
M.
Anderson
, J.
Ensher
, M.
Matthews
, C.
Wieman
, and E.
Cornell
, “Observation of Bose–Einstein condensation in a dilute atomic vapour
,” Science
269
, 198
–201
(1995
).13.
K.
Davis
, M.-O.
Mewes
, M.
Andrews
, N. van
Druten
, D.
Durfee
, D.
Kurn
, and W.
Ketterle
, “Bose–Einstein condensation of a gas of sodium atoms
,” Phys. Rev. Lett.
75
, 3969
–3973
(1995
).14.
W.
Ketterle
and N. van
Druten
, “Bose–Einstein condensation of a finite number of particles trapped in one or three dimensions
,” Phys. Rev. A
54
, 656
–660
(1996
).15.
C.
Bradley
, C.
Sackett
, and R.
Hulet
, “Bose–Einstein condensation of lithium: Observation of limited condensate number
,” Phys. Rev. Lett.
78
, 985
–989
(1997
).16.
F.
Dalfovo
, S.
Giorgini
, L. P.
Pitaevskii
, and S.
Stringari
, “Theory of Bose–Einstein condensation in trapped gases
,” Rev. Mod. Phys.
71
, 463
–512
(1999
).17.
Y.
Alhassid
, “The statistical theory of quantum dots
,” Rev. Mod. Phys.
72
, 895
–968
(2000
).18.
J.
Arnaud
, L.
Chusseau
, and F.
Philippe
, “Fluorescence from a few electrons
,” Phys. Rev. B
62
, 13482
–13489
(2000
).19.
P. T.
Landsberg
and P.
Harshman
, “Canonical versus grand canonical occupation numbers for simple systems
,” J. Stat. Phys.
53
, 475
–482
(1988
).20.
P.
Borrmann
and G.
Franke
, “Recursion formulas for quantum statistical partition functions
,” J. Chem. Phys.
98
, 2484
–2485
(1993
).21.
F.
Brosens
, L.
Lemmens
, and J. T.
Devreese
, “Thermodynamics of coupled identical oscillators within the path integral formalism
,” Phys. Rev. E
55
, 227
–236
(1997
).22.
P. T. Landsberg, Thermodynamics with Quantum Statistical Illustrations (Interscience, New York, 1961).
23.
D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms (Springer, New York, 1992).
24.
I. G. Macdonald, Symmetric Functions and Hall Polynomials (Clarendon, Oxford, 1979).
25.
S.
Grossmann
and M.
Holthaus
, “Fluctuations of the particle number in a trapped Bose–Einstein condensate
,” Phys. Rev. Lett.
79
, 3557
–3560
(1997
).26.
M.
Wilkens
and C.
Weiss
, “Particle number fluctuations in an ideal Bose gas
,” J. Mod. Opt.
44
, 1801
–1814
(1997
).27.
S.
Katsura
, “On the Bose–Einstein condensation
,” Prog. Theor. Phys.
16
, 689
–703
(1956
).28.
C. N.
Yang
and T. D.
Lee
, “Statistical theory of equations of state and phase transitions. I. Theory of condensation
,” Phys. Rev.
87
, 404
–409
(1952
);C. N.
Yang
and T. D.
Lee
, “Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model
,” Phys. Rev.
87
, 410
–419
(1952
).29.
C. G.
Darwin
and R. H.
Fowler
, “On the partition of energy
,” Philos. Mag.
44
, 450
–479
(1922
).30.
S.
Meljanac
, M.
Stojić
, and D.
Svrtan
, “Partition functions for general multi-level systems
,” Phys. Lett. A
224
, 319
–325
(1997
).
This content is only available via PDF.
© 2002 American Association of Physics Teachers.
2002
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.