The spin–orbit interaction and Thomas precession calculation is almost always done in the electron’s rest frame. We show here that the alternative use of the lab frame is interesting in its own right, both because naive expectations fail and because it requires the presence of a “hidden momentum” contribution.

1.
G. P.
Fisher
, “
The Electric Dipole Moment of a Moving Magnetic Dipole
,”
Am. J. Phys.
39
,
1528
1533
(
1971
).
2.
J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1998), 3rd ed.
3.
C. Moller, The Theory of Relativity (Clarendon, Oxford, 1972), 2nd ed.
4.
W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism (Addison–Wesley, Reading, MA, 1962), 2nd ed.
5.
R. D. Sard, Relativistic Mechanics (Benjamin, New York, 1970).
6.
E. F. Taylor and J. A. Wheeler, Spacetime Physics (Freeman, San Francisco, 1966).
7.
G. H.
Goedecke
, “
Geometry of the Thomas precession
,”
Am. J. Phys.
46
,
1055
1056
(
1978
).
8.
E. G. P.
Rowe
, “
Rest frames for a point particle in special relativity
,”
Am. J. Phys.
64
,
1184
1196
(
1996
).
9.
J. D.
Hamilton
, “
Relativistic precession
,”
Am. J. Phys.
64
,
1197
1201
(
1996
).
10.
M. W. P.
Strandberg
, “
Special relativity completed: The source of some 2s in the magnitude of physical phenomena
,”
Am. J. Phys.
54
,
321
331
(
1986
).
11.
R. A.
Muller
, “
Thomas precession: Where is the torque?
,”
Am. J. Phys.
60
,
313
317
(
1992
).
12.
H. A.
Farach
,
Y.
Aharonov
,
C. P.
Poole
, Jr.
, and
S. I.
Zanette
, “
Application of the nonlinear vector product to Lorentz transformations
,”
Am. J. Phys.
47
,
247
249
(
1979
).
13.
H.
Urbantke
, “
Physical holonomy, Thomas precession, and Clifford algebra
,”
Am. J. Phys.
58
,
747
750
(
1990
).
14.
L. H.
Thomas
, “
The Kinematics of an Electron with an Axis
,”
Philos. Mag.
3
,
1
22
(
1927
).
15.
See Ref. 2, problem 11.27, p. 577.
16.
A. O. Barut, Electrodynamics and Classical Theory of Fields and Particles (Dover, New York, 1980).
17.
R. V.
Krotkov
,
G. N.
Pellegrini
,
N. C.
Ford
, and
A. R.
Swift
, “
Relativity and the electric dipole moment of a moving, conducting, magnetized sphere
,”
Am. J. Phys.
67
,
493
498
(
1999
).
18.
R. Becker, Electromagnetic Fields and Interactions (Dover, New York, 1982).
19.
S.
Coleman
and
J. H.
Van Vleck
, “
Origin of ‘Hidden Momentum Forces’ on Magnets
,”
Phys. Rev.
171
,
1370
1375
(
1968
).
20.
L.
Vaidman
, “
Torque and force on a magnetic dipole
,”
Am. J. Phys.
58
,
978
983
(
1990
);
V.
Hnizdo
, “
Comment on ‘Torque and force on a magnetic dipole,’ by L. Vaidman, [Am. J. Phys. 58, 978–983 (1990)]
,”
Am. J. Phys.
60
,
279
280
(
1992
).
21.
W. H.
Furry
, “
Examples of Momentum Distributions in the Electromagnetic Field and in Matter
,”
Am. J. Phys.
37
,
621
636
(
1969
).
22.
V.
Hnizdo
, “
Conservation of linear and angular momentum and the interaction of a moving charge with a magnetic dipole
,”
Am. J. Phys.
60
,
242
246
(
1992
).
23.
E.
Comay
, “
Exposing ‘hidden momentum,’ 
Am. J. Phys.
64
,
1028
1034
(
1996
).
24.
V.
Hnizdo
, “
Hidden mechanical momentum and the field momentum in stationary electromagnetic and gravitational systems
,”
Am. J. Phys.
65
,
515
518
(
1997
).
25.
V.
Hnizdo
, “
Hidden momentum and the electromagnetic mass of a charge and current carrying body
,”
Am. J. Phys.
65
,
55
65
(
1997
).
26.
The effective torque appearing on the right-hand side of Eq. (12) was obtained by Namias for the special case of constant relative velocity using a magnetic charge model for the dipole. See
V.
Namias
, “
Electrodynamics of moving dipoles: The case of the missing torque
,”
Am. J. Phys.
57
,
171
177
(
1989
).
27.
Of all the references in this paper, Barut’s (see Ref. 16) derivation on pages 77–80 of the covariant equation of motion for the spin four-vector from a Lagrangian is the most satisfying from a theoretical perspective.
28.
W. Pauli, Theory of Relativity (Pergamon, New York, 1958).
29.
See, e.g., Ref. 4 and R. C. Tolman, Relativity, Thermodynamics, and Cosmology (Clarendon, Oxford, 1934). These authors do not write down the “hidden momentum” contribution explicitly.  
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.