A simple electronic circuit is described which can be used in the student laboratory to demonstrate and study nonlinear effects and chaos. The circuit shows the changes to the dynamical properties of the system with respect to three control parameters: the applied voltage amplitude and frequency and the circuit damping. The response voltage and its derivative can be displayed to give the phase space plot and the bifurcation diagram against any control parameter. The circuit is sufficiently ideal and stable to allow comparison of its analog output with the output obtained from standard digital computer simulations. As examples, the routes to chaos with respect to the control parameters and the bifurcation route to chaos, which follows the Feigenbaum scenario, are shown.

1.
B.
van der Pol
and
J.
van der Mark
, “
Frequency demultiplication
,”
Nature (London)
120
,
363
364
(
1927
).
2.
E. N.
Lorenz
, “
Deterministic non-periodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
3.
J. M. A. Danby, Celestial Mechanics (Willman-Bell, Richmond, 1989).
4.
M. R.
Guevara
,
L.
Glass
, and
A.
Shrier
, “
Phase locking, period doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells
,”
Science
214
,
1350
1353
(
1981
).
5.
L. O.
Chua
and
R. N.
Madan
, “
Sights and sounds of chaos
,”
IEEE Circuits Devices Mag.
4
,
3
13
(
1988
).
6.
G. Duffing, Erzwungene Schwingung bei veränderlicher Eigenfrequenz und ihre technische Bedeutung (Vieweg, Braunschweig, 1918).
7.
B. A.
Hubermann
and
J. P.
Crutchfield
, “
Chaotic states of anharmonic systems in periodic fields
,”
Phys. Rev. Lett.
43
,
1743
1747
(
1979
).
8.
H. J. Korsch and H.-J. Jodl, Chaos—A Program Collection for the PC (Springer Verlag, Berlin, 1994).
9.
R. Mannella, “Computer experiments in non-linear stochastic physics,” in Noise in Nonlinear Dynamical Systems, edited by F. Moss and P. V. E. McClintock (Cambridge U. P., Cambridge, 1989), pp. 189–217.
10.
T. S. Parker and L. O. Chua, Practical Numerical Algorithms for Chaotic Systems (Springer Verlag, Berlin, 1989).
11.
L. Fronzoni, “Analogue simulations of stochastic processes by means of minimum component electronic devices,” in Chaos and Complexity, edited by R. Livi, S. Ruffo, S. Ciliberto, and M. Buatti (World Scientific, Singapore, 1989), pp. 171–182.
12.
P. V. E. McClintock and F. Moss, “Analogue techniques for the study of problems in stochastic nonlinear dynamics,” in Noise in Nonlinear Dynamical Systems, edited by F. Moss and P. V. E. McClintock (Cambridge U. P., Cambridge, 1989), pp. 243–277.
13.
T. P.
Weldon
, “
An inductorless double scroll chaotic circuit
,”
Am. J. Phys.
58
,
936
941
(
1990
).
14.
T.
Matsumoto
, “
Chaos in electronic circuits
,”
Proc. IEEE
75
,
1033
1057
(
1987
).
15.
M. J.
Feigenbaum
, “
Quantitative universality for a class of nonlinear transformations
,”
J. Stat. Phys.
19
,
25
52
(
1980
).
16.
F. C. Moon, Chaotic Vibrations: An Introduction for Applied Scientists and Engineers (Wiley, New York, 1987).
17.
A. B. Pippard, Response and Stability (Cambridge U. P., Cambridge, 1985).
18.
I. Stewart, Does God Play Dice? (Penguin, London, 1990).
19.
M. Schroeder, Fractals, Chaos, Power Laws (Freeman, New York, 1991).
20.
H-O. Peitgen, H. Jurgens, and D. Saupe, Fractals for the Classroom, Parts 1 and 2 with activities books (Springer-Verlag, New York, 1991, in conjunction with NCTM).
21.
H-G. Schuster, Deterministic Chaos (VCH, Weinheim, 1984).
22.
E. A. Jackson, Perspectives of Nonlinear Dynamics, Vols. 1, 2 (Cambridge U. P., Cambridge, 1989–1990).
23.
B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1977).
24.
J. Feder, Fractals (Plenum, New York, 1988).
25.
A. Bunde and S. Havlin (eds.), Fractals and Disordered Systems (Springer-Verlag, Berlin, 1996).
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.