A covariant and invariant theory of navigation in curved space–time with respect to electromagnetic beacons is written in terms of J. L. Synge’s two-point invariant world function. Explicit equations are given for navigation in space–time in the vicinity of the Earth in Schwarzschild coordinates and in rotating coordinates. The restricted problem of determining an observer’s coordinate time when his or her spatial position is known is also considered.

1.
See, for example, C. M. Will, Theory and Experiment in Gravitational Physics (Cambridge U.P., New York, 1993), revised ed., pp. 67–85.
2.
B. W.
Parkinson
and
J. J.
Spilker
, Eds.,
Global Positioning System: Theory and Applications
, p. 410, Vols. I and II (P. Zarchan, editor-in-chief) [
Prog. Astronaut. Aeronaut.
163
,
164
(
1996
)].
3.
E. D. Kaplan, Understanding GPS: Principles and Applications, Mobile Communications Series (Artech, Boston, 1996).
4.
B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, Global Positioning System Theory and Practice (Springer-Verlag, New York, 1993).
5.
See, for example, C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, New York, 1973), pp. 570–583.
6.
Yu. A. Kravtsov and Yu. I. Orlov, Geometrical Optics of Inhomogeneous Media (Springer-Verlag, New York, 1990), pp. 3–5.
7.
G.
Petit
and
P.
Wolf
, “
Relativistic theory for picosecond time transfer in the vicinity of the Earth
,”
Astron. Astrophys.
286
,
971
977
(
1994
).
8.
P.
Wolf
and
G.
Petit
, “
Relativistic theory for clock syntonization and the realization of geocentric coordinate times
,”
Astron. Astrophys.
304
,
653
661
(
1995
).
9.
B.
Guinot
, “
Application of general relativity to metrology
,”
Metrologia
34
,
261
290
(
1997
).
10.
F.
de Felice
,
M. G.
Lattanzi
,
A.
Vecchiato
, and
P. L.
Bernacca
, “
General relativistic satellite astrometry. I. A non-perturbative approach to data reduction
,”
Astron. Astrophys.
332
,
1133
1141
(
1998
).
11.
T. B. Bahder, “Fermi coordinates of an observer moving in a circle in Minkowski space: Apparent behavior of clocks,” Army Research Laboratory, Adelphi, MD, Technical Report No. ARL-TR-2211, May 2000.
12.
O. J.
Sovers
and
J. L.
Fanselow
, “
Astrometry and geodesy with radio interferometry: Experiments, models, results
,”
Rev. Mod. Phys.
70
,
1393
1454
(
1998
).
13.
A. Kheyfets, “Spacetime geodesy,” Weapons Laboratory, Air Force Systems Command, Kirtland Air Force Base, NM, Technical Report No. WL-TN-90-13, July 1991.
14.
J. L. Synge, Relativity: The General Theory (North-Holland, New York, 1960).
15.
A. R. Thompson, J. M. Moran, and G. W. Swenson, Jr., Interferometry and Synthesis in Radio Astronomy (Krieger, Malabar, FL, 1994), pp. 138–139.
16.
P. N. A. M.
Visser
, “
Gravity field determination with GOCE and GRACE
,”
Adv. Space Res.
23
,
771
776
(
1999
).
17.
H. S.
Ruse
, “
Taylor’s theorem in the tensor calculus
,”
Proc. London Math. Soc.
32
,
87
92
(
1931
).
18.
H. S.
Ruse
, “
An absolute partial differential calculus
,”
Quart. J. Math. Oxford Ser.
2
,
190
(
1931
).
19.
J. L.
Synge
, “
A characteristic function in Riemannian space and its application to the solution of geodesic triangles
,”
Proc. London Math. Soc.
32
,
241
258
(
1931
).
20.
K.
Yano
and
Y.
Muto
, “
Notes on the deviation of geodesics and the fundamental scalar in a Riemannian space
,”
Proc. Phys. Math. Soc. Jpn.
18
,
142
(
1936
).
21.
J. A. Schouten, Ricci-Calculus. An Introduction to Tensor Analysis and Its Geometrical Applications (Springer-Verlag, Berlin, 1954), 2nd ed.
22.
R. W.
John
, “
Zur Berechnung des Geodatischen Abstands und Assoziierter Invarianten im Relativistischen Gravitationsfeld
,”
Ann. Phys. (Leipzig)
41
,
67
80
(
1984
).
23.
R. W.
John
, “
The world function of space-time: Some explicit exact results for specific metrics
,”
Ann. Phys. (Leipzig)
41
,
58
70
(
1989
).
24.
H. A.
Buchdahl
and
N. P.
Warner
, “
On the world function of the Schwarzschild field
,”
Gen. Relativ. Gravit.
10
,
911
923
(
1979
).
25.
J. M.
Gambi
,
P.
Romero
,
A. San
Miguel
, and
F.
Vicente
, “
Fermi coordinate transformation under baseline change in relativistic celestial mechanics
,”
Int. J. Theor. Phys.
30
,
1097
1116
(
1991
).
26.
L. I.
Sedov
, “
Inertial navigation equations with consideration of relativistic effects
,”
Sov. Phys. Dokl.
21
,
727
729
(
1976
).
27.
In the jargon of the timing and time dissemination community, determining time at a known location is referred to as “time transfer.”
28.
G.
Sagnac
,
Compt. Rend.
157
,
708
(
1913
);
G.
Sagnac
,
Compt. Rend.
157
,
1410
(
1913
);
G.
Sagnac
,
J. Phys. Radium, 5th Ser.
4
,
177
(
1914
).
29.
For a review, see
E. J.
Post
, “
Sagnac effect
,”
Rev. Mod. Phys.
39
,
475
493
(
1967
).
30.
R.
Anderson
,
H. R.
Bilger
, and
G. E.
Stedman
, “
 ‘Sagnac’ effect: A century of Earth-rotated interferometers
,”
Am. J. Phys.
62
,
975
985
(
1994
).
31.
A.
Tartaglia
, “
General relativistic corrections to the Sagnac effect
,”
Phys. Rev. D
58
,
064009
/
1
(
1998
).
32.
M. Caputo, The Gravity Field of the Earth (Academic, New York, 1967).
33.
See, for example, L. D. Landau and E. M. Lifshitz, Classical Theory of Fields (Pergamon, New York, 1975), 4th revised ed.
34.
There is an error in the tabulation of the second of these integrals in Ref. 14.
35.
S. Weinberg, Gravitation and Cosmology: Principles and Applications of the Theory of Relativity (Wiley, New York, 1972).
36.
C. M.
Will
, “
The Confrontation between General Relativity and Experiment: A 1998 Update
,” Lecture notes from the 1998 Slac Summer Institute on Particle Physics, see gr-qc/9811036.
37.
For a discussion of space-time symmetry, see, for example, R. D’Inverno, Introducing Einstein’s Relativity (Oxford U.P., New York, 1995), pp. 180–183.
38.
A.
Eddington
and
G.
Clark
, “
The problem of n bodies in general relativity theory
,”
Proc. R. Soc. London, Ser. A
166
,
465
(
1938
).
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.