We present a semiclassical study of level widths for a class of one-dimensional potentials in the presence of an ohmic environment. Using a semiclassical approach for the dipole matrix element we obtain the level widths within the golden rule approximation. For potentials with an asymptotic power-law behavior, which may in addition be limited by an infinite wall, we find a universal result: The level widths are proportional to the corresponding quantum number.

1.
See, e.g., Ulrich Weiss, Quantum Dissipative Systems (World Scientific, Singapore, 1993);
Thomas Dittrich, Peter Hänggi, Gert-Ludwig Ingold, Bernhard Kramer, Gerd Schön, and Wilhelm Zwerger, Quantum Transport and Dissipation (Wiley-VCH, Weinheim, 1998), Chap. 4.
2.
M.
Brune
,
E.
Hagley
,
J.
Dreyer
,
X.
Maı̂tre
,
A.
Maali
,
C.
Wunderlich
,
J. M.
Raimond
, and
S.
Haroche
, “
Observing the progressive decoherence of the ‘Meter’ in a quantum measurement
,”
Phys. Rev. Lett.
77
,
4887
4890
(
1996
).
3.
David P.
DiVincenzo
, “
Quantum computation
,”
Science
270
,
255
261
(
1995
).
4.
See, e.g.,
Serge
Haroche
and
Daniel
Kleppner
, “
Cavity quantum electrodynamics
,”
Phys. Today
42
,
24
30
(January
1989
).
5.
Martin C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, Berlin, 1990).
6.
Matthias Brack and Rajat K. Bhaduri, Semiclassical Physics, Frontiers in Physics (Addison-Wesley, Reading, 1997), Vol. 96.
7.
For recent work on accurate WKB wave functions for 1D potentials see:
H.
Friedrich
and
J.
Trost
,
Phys. Rev. Lett.
76
,
4869
4873
(
1996
);
H.
Friedrich
and
J.
Trost
,
Phys. Rev. A
54
,
1136
1145
(
1996
).
8.
Uday P.
Sukhatme
, “
WKB energy levels for a class of one-dimensional potentials
,”
Am. J. Phys.
41
,
1015
1016
(
1973
).
9.
J. F.
Cariñena
,
C.
Farina
, and
Cássio
Sigaud
, “
Scale invariance and the Bohr-Wilson-Sommerfeld (BWS) quantization for power law one-dimensional potential wells
,”
Am. J. Phys.
61
,
712
717
(
1993
).
10.
As an early reference we mention
V. B.
Magalinskiı̌
, “
Dynamical model in the theory of the Brownian motion
,”
Zh. Eksp. Teor. Fiz.
36
,
1942
1944
(
1959
)
V. B.
Magalinskiı̌
, [
Sov. Phys. JETP
9
,
1381
1382
(
1959
)]. Further references can be found for example in Ref. 1.
11.
A. O.
Caldeira
and
A. J.
Leggett
, “
Quantum tunneling in a dissipative system
,”
Ann. Phys. (N.Y.)
149
,
374
456
(
1983
).
12.
C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics (Wiley, New York, 1978), Vol. 2, p. 1318.
13.
See, e.g., Claude Cohen-Tannoudji, Jacques Dupont-Roc, and Gilbert Grynberg, Atom-Photon Interactions (Wiley, New York, 1992).
14.
A.
Hanke
and
W.
Zwerger
, “
Density of states of a damped quantum oscillator
,”
Phys. Rev. E
52
,
6875
6878
(
1995
).
15.
See, e.g., L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Sec. 48 (Pergamon, New York, 1959).
16.
Robert
Karrlein
and
Hermann
Grabert
, “
Semiclassical theory of vibrational energy relaxation
,”
J. Chem. Phys.
108
,
4972
4983
(
1998
).
17.
S. M.
Susskind
and
R. V.
Jensen
, “
Numerical calculations of the ionization of one-dimensional hydrogen atoms using hydrogenic and Sturmian basis functions
,”
Phys. Rev. A
38
,
711
728
(
1988
).
18.
Hermann
Marxer
and
Larry
Spruch
, “
Semiclassical estimation of the radiative mean lifetimes of hydrogen like states
,”
Phys. Rev. A
43
,
1268
1274
(
1991
).
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.