Loss and restoration of interference similar to that produced in “quantum erasure” can be demonstrated in interference of macroscopic laser beams by using polarization to distinguish light from two slits. You can choose whether to observe interference or identify the light from each slit. The choice can be reversed and repeated an unlimited number of times. It never becomes irreversible.

1.
M. O.
Scully
,
B.-G.
Englert
, and
H.
Walther
, “
Quantum optical test of complementarity
,”
Nature (London)
351
(
6322
),
111
116
(
1991
);
A. G.
Zajonc
,
L. J.
Wang
,
X. Y.
Zou
, and
L.
Mandel
, “
Quantum eraser
,”
Nature (London)
353
,
507
508
(
1991
);
P. G.
Kwiat
,
A. M.
Steinberg
, and
R. Y.
Chiao
, “
Observation of a ‘quantum eraser’: A revival of coherence in a two-photon interference experiment
,”
Phys. Rev. A
45
,
7729
7739
(
1992
);
B.-G.
Englert
,
M. O.
Scully
, and
H.
Walther
, “
The duality in matter and light
,”
Sci. Am. (Int. Ed.)
271
(
6
),
56
61
(December
1994
).
2.
U.
Mohrhoff
, “
Restoration of interference and the fallacy of delayed choice: Concerning an experiment proposed by Englert, Scully, and Walther
,”
Am. J. Phys.
64
,
1468
1475
(
1996
);
B.-G.
Englert
,
M. O.
Scully
, and
H.
Walther
, “
Quantum erasure in double-slit interferometers with which-way detectors
,”
Am. J. Phys.
67
,
325
329
(
1999
);
U.
Mohrhoff
, “
Objectivity, retrocausation, and the experiment of Englert, Scully, and Walther
,”
Am. J. Phys.
67
,
330
335
(
1999
).
3.
T. F.
Jordan
, “
Disappearance and reappearance of macroscopic quantum interference
,”
Phys. Rev. A
48
,
2449
2450
(
1993
).
4.
R. J.
Glauber
, “
Photon correlations
,”
Phys. Rev. Lett.
10
,
84
86
(
1963
);
R. J.
Glauber
, “
The quantum theory of optical coherence
,”
Phys. Rev.
130
,
2529
2539
(
1963
);
R. J.
Glauber
, “
Coherent and incoherent states of the radiation field
,”
Phys. Rev.
131
,
2766
2788
(
1963
);
T. F.
Jordan
and
F.
Ghielmetti
, “
Quantum theory of interference of light from two lasers
,”
Phys. Rev. Lett.
12
,
607
609
(
1964
);
J. R. Klauder and E. C. G. Sudarshan, Fundamentals of Quantum Optics (Benjamin, New York, 1968);
R. Laudon, The Quantum Theory of Light (Oxford U.P., Oxford, 1973);
M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U.P., Cambridge, 1997).  
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.