We present numerically exact solutions of the time-independent Schrödinger equation for the following system: two particles of the same charge, repelled by the Coulomb force, confined to a one-dimensional infinite well. The eigenfunctions are expanded in a basis set of product delta functions; the expansion allows the removal of the Coulomb potential’s singularity. We report and discuss our findings regarding correlated behavior in the lowest energy states of a well of length 3 bohr (1 bohr=1 Bohr radius≈0.52 Å).

1.
M.
de Llano
, “
A Soluble Self-consistent Nuclear Model
,”
Am. J. Phys.
41
,
484
489
(
1973
).
2.
J. S.
Bolemon
and
D. J.
Etzold
, Jr.
, “
Enriching Elementary Quantum Mechanics with the Computer: Self-consistent Field Problems in One-dimension
,”
Am. J. Phys.
42
,
33
42
(
1974
).
3.
I. R.
Lapidus
, “
One-dimensional models for two-electron systems
,”
Am. J. Phys.
43
,
790
792
(
1975
).
4.
Y.
Nogami
,
M.
Vallières
, and
W.
van Dijk
, “
Hartree–Fock approximation for the one-dimensional ‘helium atom,’ 
Am. J. Phys.
44
,
886
888
(
1976
).
5.
L. L.
Foldy
, “
An interesting exactly soluble one-dimensional Hartree problem
,”
Am. J. Phys.
44
,
1192
1196
(
1976
).
6.
H. A.
Gersch
, “
An exactly soluble one-dimensional, two-particle problem
,”
Am. J. Phys.
52
,
227
230
(
1984
).
7.
A.
Redondo
, “
A class of exactly soluble many-body Hamiltonians
,”
Am. J. Phys.
54
,
643
646
(
1986
).
8.
J. R.
Mohallem
and
L. M.
Oliveira
, “
Correlated wave function of two particles in an infinite well with a delta repulsion
,”
Am. J. Phys.
58
,
590
592
(
1990
).
9.
H. L.
Neal
, “
Density functional theory of one-dimensional two-particle systems
,”
Am. J. Phys.
66
,
512
516
(
1998
).
10.
J.
Yang
and
V.
Zelevinsky
, “
Short-range repulsion and symmetry of two-body wave functions
,”
Am. J. Phys.
66
,
247
251
(
1998
).
11.
See I. N. Levine, Quantum Chemistry (Allyn and Bacon, Boston, MA, 1974), 2nd ed., pp. 193–194 and 207–210 for a synopsis.
12.
See G. Arfken, Mathematical Methods for Physicists (Academic, Orlando, FL, 1985), 3rd ed., pp. 481–484, 528–529, and 799–800 for properties of delta functions.
13.
A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Macmillan, New York, 1982), pp. 24–37.
14.
Because of the finite-difference approximation of the kinetic energy operators, the variational principle which usually applies to Eq. (5) is not in force.
15.
Per-Olov
Löwdin
, “
Studies in Perturbation Theory. VII. Localized Perturbation
,”
J. Mol. Spectrosc.
14
,
119
130
(
1964
).
16.
R. Eisberg and R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles (Wiley, New York, 1974), pp. 327–346.
17.
The S/A degeneracy is easily proved given Ψk(x1,x2)=0 for x1=x2. It follows that for every S eigenfunction, an A eigenfunction can be constructed with the same eigenvalue, and vice versa.
18.
J. Stoer and R. Bulirsch, Introduction to Numerical Analysis (Springer-Verlag, New York, 1980), pp. 354–356.
19.
M. R.
Hestenes
and
E.
Stiefel
, “
Methods of conjugate gradients for solving linear systems
,”
Natl. Bur. Stand. J. Res.
49
,
409
436
(
1952
).
20.
M. J. Frisch, M. Head-Gordon, J. B. Foresman, G. W. Trucks, K. Raghavachari, H. B. Schlegel, M. Robb, J. S. Binkley, C. Gonzalez, D. J. Defrees, D. J. Fox, R. A. Whiteside, R. Seeger, C. F. Melius, J. Baker, L. R. Kahn, J. J. P. Stewart, E. M. Fluder, S. Topiol, and J. A. Pople, GAUSSIAN 90, Gaussian, Inc., Pittsburgh, PA 15213, 1990.
21.
See Ref. 13, pp. 45–47.
22.
R. C.
Dunbar
, “
The Influence of Electrons on Each Other in a Molecule: Correlation of Electron Motions in H2,
J. Chem. Edu.
66
,
463
466
(
1989
).
23.
Lowest eigenvalues for N=300 and L=3 bohr: E(1)=0.548 306(11),E(2)=2.193 166(245), and E(3)=4.934 940(802) a.u., with exact values of last digits shown in parentheses. Full diagonalization of a 300×300 matrix by a general routine should take less than 10 min on a small computer.  
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.