We present numerically exact solutions of the time-independent Schrödinger equation for the following system: two particles of the same charge, repelled by the Coulomb force, confined to a one-dimensional infinite well. The eigenfunctions are expanded in a basis set of product delta functions; the expansion allows the removal of the Coulomb potential’s singularity. We report and discuss our findings regarding correlated behavior in the lowest energy states of a well of length 3 bohr (1 bohr=1 Bohr radius≈0.52 Å).

## REFERENCES

1.

M.

de Llano

, “A Soluble Self-consistent Nuclear Model

,” Am. J. Phys.

41

, 484

–489

(1973

).2.

J. S.

Bolemon

and D. J.

Etzold

, Jr., “Enriching Elementary Quantum Mechanics with the Computer: Self-consistent Field Problems in One-dimension

,” Am. J. Phys.

42

, 33

–42

(1974

).3.

I. R.

Lapidus

, “One-dimensional models for two-electron systems

,” Am. J. Phys.

43

, 790

–792

(1975

).4.

Y.

Nogami

, M.

Vallières

, and W.

van Dijk

, “Hartree–Fock approximation for the one-dimensional ‘helium atom,’

” Am. J. Phys.

44

, 886

–888

(1976

).5.

L. L.

Foldy

, “An interesting exactly soluble one-dimensional Hartree problem

,” Am. J. Phys.

44

, 1192

–1196

(1976

).6.

H. A.

Gersch

, “An exactly soluble one-dimensional, two-particle problem

,” Am. J. Phys.

52

, 227

–230

(1984

).7.

A.

Redondo

, “A class of exactly soluble many-body Hamiltonians

,” Am. J. Phys.

54

, 643

–646

(1986

).8.

J. R.

Mohallem

and L. M.

Oliveira

, “Correlated wave function of two particles in an infinite well with a delta repulsion

,” Am. J. Phys.

58

, 590

–592

(1990

).9.

H. L.

Neal

, “Density functional theory of one-dimensional two-particle systems

,” Am. J. Phys.

66

, 512

–516

(1998

).10.

J.

Yang

and V.

Zelevinsky

, “Short-range repulsion and symmetry of two-body wave functions

,” Am. J. Phys.

66

, 247

–251

(1998

).11.

See I. N. Levine,

*Quantum Chemistry*(Allyn and Bacon, Boston, MA, 1974), 2nd ed., pp. 193–194 and 207–210 for a synopsis.12.

See G. Arfken,

*Mathematical Methods for Physicists*(Academic, Orlando, FL, 1985), 3rd ed., pp. 481–484, 528–529, and 799–800 for properties of delta functions.13.

A. Szabo and N. S. Ostlund,

*Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory*(Macmillan, New York, 1982), pp. 24–37.14.

Because of the finite-difference approximation of the kinetic energy operators, the variational principle which usually applies to Eq. (5) is not in force.

15.

Per-Olov

Löwdin

, “Studies in Perturbation Theory. VII. Localized Perturbation

,” J. Mol. Spectrosc.

14

, 119

–130

(1964

).16.

R. Eisberg and R. Resnick,

*Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles*(Wiley, New York, 1974), pp. 327–346.17.

The $S/A$ degeneracy is easily proved given $\Psi k(x1,x2)=0$ for $x1=x2.$ It follows that for every

*S*eigenfunction, an*A*eigenfunction can be constructed with the same eigenvalue, and vice versa.18.

J. Stoer and R. Bulirsch,

*Introduction to Numerical Analysis*(Springer-Verlag, New York, 1980), pp. 354–356.19.

M. R.

Hestenes

and E.

Stiefel

, “Methods of conjugate gradients for solving linear systems

,” Natl. Bur. Stand. J. Res.

49

, 409

–436

(1952

).20.

M. J. Frisch, M. Head-Gordon, J. B. Foresman, G. W. Trucks, K. Raghavachari, H. B. Schlegel, M. Robb, J. S. Binkley, C. Gonzalez, D. J. Defrees, D. J. Fox, R. A. Whiteside, R. Seeger, C. F. Melius, J. Baker, L. R. Kahn, J. J. P. Stewart, E. M. Fluder, S. Topiol, and J. A. Pople, GAUSSIAN 90, Gaussian, Inc., Pittsburgh, PA 15213, 1990.

21.

See Ref. 13, pp. 45–47.

22.

R. C.

Dunbar

, “The Influence of Electrons on Each Other in a Molecule: Correlation of Electron Motions in $H2,$

” J. Chem. Edu.

66

, 463

–466

(1989

).23.

Lowest eigenvalues for $N=300$ and $L=3$ bohr: $E(1)=0.548\u200a306(11),$ $E(2)=2.193\u200a166(245),$ and $E(3)=4.934\u200a940(802)\u200aa.u.,$ with exact values of last digits shown in parentheses. Full diagonalization of a 300×300 matrix by a general routine should take less than 10 min on a small computer.

This content is only available via PDF.

© 2001 American Association of Physics Teachers.

2001

American Association of Physics Teachers

AAPT members receive access to the

*American Journal of Physics*and*The Physics Teacher*as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.