Article PDF first page preview

Article PDF first page preview
1.
Dwight E.
Neuenschwander
, “
Question #51. Applications of third-order and fifth-order differential equations
,”
Am. J. Phys.
64
(
11
),
1353
(
1996
).
2.
Kirk T.
McDonald
, “
Answer to Question #51. Applications of third-order and fifth-order differential equations
,”
Am. J. Phys.
66
(
4
),
277
278
(
1998
).
3.
George
DeRise
, “
Answer to Question #51. Applications of third-order and fifth-order differential equations
,”
Am. J. Phys.
66
(
4
),
278
(
1998
).
4.
H. P. W.
Gottlieb
, “
Simple nonlinear jerk functions with periodic solutions
,”
Am. J. Phys.
66
(
10
),
903
906
(
1998
).
5.
H. P. W.
Gottlieb
, “
Question #38. What is the simplest jerk function that gives chaos?
,”
Am. J. Phys.
64
(
5
),
525
(
1996
).
6.
Hans Christian
von Baeyer
, “
All shook up
,”
The Sciences
38
(
1
),
12
14
(
1998
).
7.
Stefan J.
Linz
and
Julien C.
Sprott
, “
The future of chaos
,”
The Sciences
39
(
1
),
47
48
(
1999
).
8.
Stefan J.
Linz
, “
Nonlinear dynamical models and jerky motion
,”
Am. J. Phys.
65
(
6
),
523
526
(
1997
).
9.
J. C.
Sprott
, “
Some simple chaotic jerk functions
,”
Am. J. Phys.
65
(
6
),
537
543
(
1997
).
10.
Stefan J.
Linz
, “
Newtonian jerky dynamics: Some general properties
,”
Am. J. Phys.
66
(
12
),
1109
1114
(
1998
).
11.
J. C.
Sprott
, “
Simplest dissipative chaotic flow
,”
Phys. Lett. A
228
,
271
274
(
1997
).
12.
Ralf
Eichhorn
,
Stefan J.
Linz
, and
Peter
Hanggi
, “
Transformations of nonlinear dynamical systems to jerky motion and its application to minimal chaotic flows
,”
Phys. Rev. E
58
(
6
),
7151
7164
(
1998
).
13.
Stefan J.
Linz
and
J. C.
Sprott
, “
Elementary chaotic flow
,”
Phys. Lett. A
259
,
240
245
(
1999
).
14.
Ralf
Eichhorn
,
Stefan J.
Linz
, and
Peter
Hanggi
, “
Classes of dynamical systems being equivalent to a jerky motion
,”
Z. Angew. Math. Mech.
79
,
S287
S288
(
1999
).
15.
Lennart Rade and Bertil Westergren, Beta Mathematics Handbook (Studentlitteratur, Sweden, 1990), 2nd ed., p. 317.
16.
Earl A. Coddington and Norman Levinson, Theory of Ordinary Differential Equations (McGraw–Hill, New York, 1955), Chap. 7.
17.
Ali Hassan Nayfeh, Introduction to Perturbation Techniques (Wiley, New York, 1981/1993 reprint), p. 434.
18.
Leonard Meirovitch, Elements of Vibration Analysis (McGraw–Hill, New York, 1975), p. 208.
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.