It is easy to construct classical two-state systems illustrating the behavior of the short-lived and long-lived neutral K mesons in the limit of CP conservation. The emulation of CP violation is more tricky, but is provided by the two-dimensional motion of a Foucault pendulum. Analogies are drawn between the pendulum and observables in neutral kaon decays. An emulation of CP and CPT violation using electric circuits is also discussed.

1.
We thank N. F. Ramsey for a discussion on this point. See, e.g., J. J. Sakurai, Modern Quantum Mechanics (Addison–Wesley, Reading, MA, and Menlo Park, CA, 1994), Revised ed., p. 320.
2.
G. Baym, Lectures on Quantum Mechanics (Benjamin, New York, 1969).
3.
M.
Gell-Mann
and
A.
Pais
, “
Behavior of neutral particles under charge conjugation
,”
Phys. Rev.
97
,
1387
1389
(
1955
).
4.
J. L.
Rosner
, “
Table-top time-reversal violation
,”
Am. J. Phys.
64
,
982
985
(
1996
).
5.
J. H.
Christenson
,
J. W.
Cronin
,
V. L.
Fitch
, and
R.
Turlay
, “
Evidence for the 2π decay of the K20 meson
,”
Phys. Rev. Lett.
13
,
138
140
(
1964
).
6.
B. Winstein, “CP violation,” in Festi-Val – Festschrift for Val Telegdi, edited by K. Winter (Elsevier, Amsterdam, 1988), pp. 245–265.
7.
H. Goldstein, Classical Mechanics (Addison–Wesley, New York, 1980), 2nd ed., p. 177.
8.
G. D.
Rochester
and
C. C.
Butler
, “
Evidence for the existence of new unstable elementary particles
,”
Nature (London)
160
,
855
857
(
1947
).
9.
M.
Gell-Mann
, “
Isotopic spin and new unstable particles
,”
Phys. Rev.
92
,
833
834
(
1953
);
“On the Classification of Particles,” 1953 (unpublished);
M. Gell-Mann and A. Pais, in Proceedings of the 1954 Glasgow Conference on Nuclear and Meson Physics, edited by E. H. Bellamy and R. G. Moorhouse (Pergamon, London and New York, 1955);
M.
Gell-Mann
, “
The interpretation of the new particles as displaced charge multiplets
,”
Nuovo Cimento Suppl.
4
,
848
866
(
1956
);
T.
Nakano
and
K.
Nishijima
, “
Charge independence forV-particles
,”
Prog. Theor. Phys.
10
,
581
582
(
1953
);
K.
Nishijima
, “
Some remarks on the even–odd rule
,”
Prog. Theor. Phys.
12
,
107
108
(
1954
);
K.
Nishijima
, “
Charge independence theory of V-particles
,”
Prog. Theor. Phys.
13
,
285
304
(
1955
).
10.
K.
Lande
,
E. T.
Booth
,
J.
Impeduglia
, and
L. M.
Lederman
, “
Observation of long-lived V-particles
,”
Phys. Rev.
103
,
1901
1904
(
1956
).
11.
See, e.g., R. G. Sachs, The Physics of Time Reversal Invariance (University of Chicago Press, Chicago, 1988).
12.
J.
Schwinger
, “
The theory of quantized fields. II
,”
Phys. Rev.
91
,
713
728
(
1953
) (see especially p. 720 ff);
J.
Schwinger
, “
The theory of quantized fields. VI
,”
Phys. Rev.
94
,
1362
1384
(
1954
) [see especially Eq. (54) on p. 1366 and p. 1376 ff];
G.
Lüders
, “
On the equivalence of invariance under time reversal and under particle-antiparticle conjugation for relativistic field theories
,”
Kong. Danske Vid. Selsk., Matt-fys. Medd.
28
(
5
),
1
17
(
1954
);
G.
Lüders
,
Proof of theTCP theorem
,”
Ann. Phys. (N.Y.)
2
,
1
15
(
1957
);
W. Pauli, in “Exclusion principle, Lorentz group, and reflection of space-time and charge,” Niels Bohr and the Development of Physics (Pergamon, New York, 1955), pp. 30–51.
13.
Particle Data Group,
C.
Caso
et al., “
Review of particle physics
,”
Eur. Phys. J. C
3
,
1
794
(
1998
).
14.
T. P. Cheng and L. F. Li, Gauge Theory of Elementary Particles (Oxford U.P., Oxford, 1984);
K. Kleinknecht, “CP violation in the K0–K̄0 system,” in CP Violation, edited by C. Jarlskog (World Scientific, Singapore, 1989), pp. 41–104;
B.
Winstein
and
L.
Wolfenstein
, “
The search for directCP violation
,”
Rev. Mod. Phys.
63
,
1113
1148
(
1992
);
P. K. Kabir, The CP Puzzle (Academic, New York, 1968).
15.
L.
Wolfenstein
, “
Violation of CP invariance and the possibility of very weak interactions
,”
Phys. Rev. Lett.
13
,
562
564
(
1964
).
16.
N.
Cabibbo
, “
Unitary symmetry and leptonic decays
,”
Phys. Rev. Lett.
10
,
531
532
(
1963
);
M.
Kobayashi
and
T.
Maskawa
, “
CP violation in the renormalizable theory of the weak interaction
,”
Prog. Theor. Phys.
49
,
652
657
(
1973
).
17.
R. H. Dalitz, “Kaon physics—The first 50+ years,” in Kaon Physics, edited by J. L. Rosner and B. Winstein (University of Chicago Press, Chicago, to be published).
18.
P. K.
Kabir
, “
What is not invariant under time reversal?
,”
Phys. Rev. D
2
,
540
542
(
1970
).
19.
CPLEAR Collaboration
,
A.
Angelopoulos
et al., “
First observation of time reversal noninvariance in the neutral kaon system
,”
Phys. Lett. B
444
,
43
51
(
1998
).
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.