Many new chaotic systems with algebraically simple representations are described. These systems involve a single third-order autonomous ordinary differential equation (jerk equation) with various nonlinearities. Piecewise linear functions are emphasized to permit easy electronic implementation with diodes and operational amplifiers. Several new simple and robust chaotic electrical circuits are described and evaluated.

1.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
2.
O. E.
Rössler
, “
An equation for continuous chaos
,”
Phys. Lett. A
57
,
397
398
(
1976
).
3.
O. E.
Rössler
, “
Continuous chaos—Four prototype equations
,”
Ann. (N.Y.) Acad. Sci.
316
,
376
392
(
1979
).
4.
J. C.
Sprott
, “
Some simple chaotic flows
,”
Phys. Rev. E
50
,
R647
R650
(
1994
).
5.
H. P. W.
Gottlieb
, “
Question #38. What is the simplest jerk function that gives chaos?
Am. J. Phys.
64
,
525
(
1996
).
6.
S. J.
Linz
, “
Nonlinear dynamical models and jerky motion
,”
Am. J. Phys.
65
,
523
526
(
1997
).
7.
J. C.
Sprott
, “
Some simple chaotic jerk functions
,”
Am. J. Phys.
65
,
537
543
(
1997
).
8.
J. C.
Sprott
, “
Simplest dissipative chaotic flow
,”
Phys. Lett. A
228
,
271
274
(
1997
).
9.
R.
Eichhorn
,
S. J.
Linz
, and
P.
Hänggi
, “
Transformations of nonlinear dynamical systems to jerky motion and its application to minimal chaotic flows
,”
Phys. Rev. E
58
,
7151
7164
(
1998
).
10.
Zhang
Fu
and
J.
Heidel
, “
Non-chaotic behaviour in three-dimensional quadratic systems
,”
Nonlinearity
10
,
1289
1303
(
1997
).
11.
J.
Heidel
and
Zhang
Fu
, “
Nonchaotic behaviour in three-dimensional quadratic systems. II. The conservative case
,”
Nonlinearity
12
,
617
633
(
1999
).
12.
A.
Wolf
,
J. B.
Swift
,
H. L.
Swinney
, and
J. A.
Vastano
, “
Determining Lyapunov exponents from a time series
,”
Physica D
16
,
285
317
(
1985
).
13.
S. J.
Linz
and
J. C.
Sprott
, “
Elementary chaotic flow
,”
Phys. Lett. A
259
,
240
245
(
1999
).
14.
More detail about the system in Eq. (5), including a sound file of the bifurcations as 1/A is increased can be found at http://sprott.physics.wisc.edu/chaos/abschaos.htm.
15.
TOPSPICE, a PC version of the SPICE circuit simulator is available from Penzar Development. A demo version can be found at http://www.penzar.com/topspice.htm.
16.
G. Marlow, Audioscope (Physics Academic Software, Raleigh, NC, 1999).
17.
T.
Matsumoto
,
L. O.
Chua
, and
M.
Komoro
, “
The double scroll
,”
IEEE Trans. Circuits Syst.
CAS-32
,
797
818
(
1985
).
18.
T.
Matsumoto
,
L. O.
Chua
, and
M.
Komoro
, “
Birth and death of the double scroll
,”
Physica D
24
,
97
124
(
1987
).
19.
Ö.
Morgül
, “
Inductorless realisation of chua oscillator
,”
Electron. Lett.
31
,
1303
1304
(
1995
).
20.
A. S.
Elwakil
and
A. M.
Soliman
, “
Two modified for chaos negative impedance converter op amp oscillators with symmetrical and antisymmetrical nonlinearities
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
8
,
1335
1346
(
1998
).
21.
A.
Tamaševičius
,
G.
Mykolaitis
, and
A.
Namajūnas
, “
Double scroll in a simple ‘2D’ chaotic oscillator
,”
Electron. Lett.
32
,
1250
1251
(
1996
).
22.
P.
Coullet
,
C.
Tresser
, and
A.
Arnéodo
, “
Transition to stochasticity for a class of forced oscillators
,”
Phys. Lett. A
72
,
268
270
(
1979
).
23.
A.
Arneodo
,
P.
Coullet
, and
C.
Tresser
, “
Possible new strange attractors with spiral structure
,”
Commun. Math. Phys.
79
,
573
579
(
1981
).
24.
A.
Arneodo
,
P.
Coullet
, and
C.
Tresser
, “
Oscillators with chaotic behavior: An illustration of a theorem by Shil’nikov
,”
J. Stat. Phys.
27
,
171
182
(
1982
).
25.
N. F.
Rul’kov
,
A. R.
Volkovskii
,
A.
Rodriguez-Lozano
,
E.
Del Rı́o
, and
M. G.
Velarde
, “
Mutual synchronization of chaotic self-oscillators with dissipative coupling
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
2
,
669
676
(
1992
).
26.
E.
Del Rı́o
,
M. G.
Velarde
,
A.
Rodrı́guez-Lozano
,
N. F.
Rul’kov
, and
A. R.
Volkovskii
, “
Experimental evidence for synchronous behavior of chaotic nonlinear oscillators with unidirectional or mutual driving
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
4
,
1003
1009
(
1994
).
27.
L. O.
Chua
and
F.
Ayrom
, “
Designing non-linear single op-amp circuits: A cookbook approach
,”
Int. J. Circuit Theory Appl.
13
,
235
268
(
1985
).
28.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U.P., Cambridge, 1993), p. 436 (also available on-line at http://www.ulib.org/webRoot/Books/Numerical_Recipes/).
29.
J.
Kaplan
and
J.
Yorke
, in
Functional Differential Equations and the Approximation of Fixed Points
, edited by
H. O.
Peitgen
and
,
H. O.
Walther
[
Lect. Notes Math.
730
,
204
(
1979
)].
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.