Many new chaotic systems with algebraically simple representations are described. These systems involve a single third-order autonomous ordinary differential equation (jerk equation) with various nonlinearities. Piecewise linear functions are emphasized to permit easy electronic implementation with diodes and operational amplifiers. Several new simple and robust chaotic electrical circuits are described and evaluated.
REFERENCES
1.
E. N.
Lorenz
, “Deterministic nonperiodic flow
,” J. Atmos. Sci.
20
, 130
–141
(1963
).2.
O. E.
Rössler
, “An equation for continuous chaos
,” Phys. Lett. A
57
, 397
–398
(1976
).3.
O. E.
Rössler
, “Continuous chaos—Four prototype equations
,” Ann. (N.Y.) Acad. Sci.
316
, 376
–392
(1979
).4.
J. C.
Sprott
, “Some simple chaotic flows
,” Phys. Rev. E
50
, R647
–R650
(1994
).5.
H. P. W.
Gottlieb
, “Question #38. What is the simplest jerk function that gives chaos?
” Am. J. Phys.
64
, 525
(1996
).6.
S. J.
Linz
, “Nonlinear dynamical models and jerky motion
,” Am. J. Phys.
65
, 523
–526
(1997
).7.
J. C.
Sprott
, “Some simple chaotic jerk functions
,” Am. J. Phys.
65
, 537
–543
(1997
).8.
J. C.
Sprott
, “Simplest dissipative chaotic flow
,” Phys. Lett. A
228
, 271
–274
(1997
).9.
R.
Eichhorn
, S. J.
Linz
, and P.
Hänggi
, “Transformations of nonlinear dynamical systems to jerky motion and its application to minimal chaotic flows
,” Phys. Rev. E
58
, 7151
–7164
(1998
).10.
Zhang
Fu
and J.
Heidel
, “Non-chaotic behaviour in three-dimensional quadratic systems
,” Nonlinearity
10
, 1289
–1303
(1997
).11.
J.
Heidel
and Zhang
Fu
, “Nonchaotic behaviour in three-dimensional quadratic systems. II. The conservative case
,” Nonlinearity
12
, 617
–633
(1999
).12.
A.
Wolf
, J. B.
Swift
, H. L.
Swinney
, and J. A.
Vastano
, “Determining Lyapunov exponents from a time series
,” Physica D
16
, 285
–317
(1985
).13.
S. J.
Linz
and J. C.
Sprott
, “Elementary chaotic flow
,” Phys. Lett. A
259
, 240
–245
(1999
).14.
More detail about the system in Eq. (5), including a sound file of the bifurcations as is increased can be found at http://sprott.physics.wisc.edu/chaos/abschaos.htm.
15.
TOPSPICE, a PC version of the SPICE circuit simulator is available from Penzar Development. A demo version can be found at http://www.penzar.com/topspice.htm.
16.
G. Marlow, Audioscope (Physics Academic Software, Raleigh, NC, 1999).
17.
T.
Matsumoto
, L. O.
Chua
, and M.
Komoro
, “The double scroll
,” IEEE Trans. Circuits Syst.
CAS-32
, 797
–818
(1985
).18.
T.
Matsumoto
, L. O.
Chua
, and M.
Komoro
, “Birth and death of the double scroll
,” Physica D
24
, 97
–124
(1987
).19.
Ö.
Morgül
, “Inductorless realisation of chua oscillator
,” Electron. Lett.
31
, 1303
–1304
(1995
).20.
A. S.
Elwakil
and A. M.
Soliman
, “Two modified for chaos negative impedance converter op amp oscillators with symmetrical and antisymmetrical nonlinearities
,” Int. J. Bifurcation Chaos Appl. Sci. Eng.
8
, 1335
–1346
(1998
).21.
A.
Tamaševičius
, G.
Mykolaitis
, and A.
Namajūnas
, “Double scroll in a simple ‘2D’ chaotic oscillator
,” Electron. Lett.
32
, 1250
–1251
(1996
).22.
P.
Coullet
, C.
Tresser
, and A.
Arnéodo
, “Transition to stochasticity for a class of forced oscillators
,” Phys. Lett. A
72
, 268
–270
(1979
).23.
A.
Arneodo
, P.
Coullet
, and C.
Tresser
, “Possible new strange attractors with spiral structure
,” Commun. Math. Phys.
79
, 573
–579
(1981
).24.
A.
Arneodo
, P.
Coullet
, and C.
Tresser
, “Oscillators with chaotic behavior: An illustration of a theorem by Shil’nikov
,” J. Stat. Phys.
27
, 171
–182
(1982
).25.
N. F.
Rul’kov
, A. R.
Volkovskii
, A.
Rodriguez-Lozano
, E.
Del Rı́o
, and M. G.
Velarde
, “Mutual synchronization of chaotic self-oscillators with dissipative coupling
,” Int. J. Bifurcation Chaos Appl. Sci. Eng.
2
, 669
–676
(1992
).26.
E.
Del Rı́o
, M. G.
Velarde
, A.
Rodrı́guez-Lozano
, N. F.
Rul’kov
, and A. R.
Volkovskii
, “Experimental evidence for synchronous behavior of chaotic nonlinear oscillators with unidirectional or mutual driving
,” Int. J. Bifurcation Chaos Appl. Sci. Eng.
4
, 1003
–1009
(1994
).27.
L. O.
Chua
and F.
Ayrom
, “Designing non-linear single op-amp circuits: A cookbook approach
,” Int. J. Circuit Theory Appl.
13
, 235
–268
(1985
).28.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U.P., Cambridge, 1993), p. 436 (also available on-line at http://www.ulib.org/webRoot/Books/Numerical_Recipes/).
29.
J.
Kaplan
and J.
Yorke
, in Functional Differential Equations and the Approximation of Fixed Points
, edited by H. O.
Peitgen
and , H. O.
Walther
[Lect. Notes Math.
730
, 204
(1979
)].
This content is only available via PDF.
© 2000 American Association of Physics Teachers.
2000
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.