We examine Bose–Einstein condensation (BEC) for particles trapped in a harmonic potential by considering it as a transition in the length of permutation cycles that arise from wave-function symmetry. This “loop-gas” approach was originally developed by Feynman in his path-integral study of BEC for a homogeneous gas in a box. For the harmonic oscillator potential it is possible to treat the ideal gas exactly so that one can easily see how standard approximations become more accurate in the thermodynamic limit (TDL). One clearly sees that the condensate is made up of very long permutation loops whose length fluctuates ever more widely as the number of particles increases. In the TDL, the Wentzel–Kramers–Brillouin approximation, equivalent to the standard approach to BEC, becomes precise for the noncondensate; however, this approximation neglects completely the long cycles that make up the condensate. We examine the exact form for the density matrix for the system and show how it describes the condensate and behaves in the TDL.

1.
M. H.
Anderson
,
J. R.
Ensher
,
M. R.
Matthews
,
C. E.
Wieman
, and
E. A.
Cornell
, “
Observation of Bose–Einstein Condensation in a Dilute Atomic Vapor
,”
Science
269
,
198
201
(
1995
);
K. B.
Davis
,
M.-O.
Mewes
,
M. R.
Andrews
,
N. J.
van Druten
,
D. S.
Durfee
,
D. M.
Kurn
, and
W.
Ketterle
, “
Bose–Einstein Condensation in a Gas of Sodium Atoms
,”
Phys. Rev. Lett.
75
,
3969
3973
(
1995
);
C. C.
Bradley
,
C. A.
Sachett
,
J. J.
Tollett
, and
R. G.
Hulet
, “
Bose–Einstein condensation of lithium: Observation of limited condensate number
,”
Phys. Rev. Lett.
78
,
985
989
(
1997
).
2.
For a review, see
F.
Dalfovo
,
S.
Giorgini
,
L. P.
Pitaevskii
, and
S.
Stringari
, “
Theory of trapped Bose-condensed gases
,” cond-mat/9806038); Rev. Mod. Phys. (to be published).
3.
F. C.
Auluck
and
D. S.
Kothari
, “
Statistical Mechanics and the Partitions of Numbers
,”
Proc. Cambridge Philos. Soc.
42
,
272
(
1946
);
S. R.
De Groot
,
G. J.
Hooyman
, and
C. A.
ten Seldam
, “
On the Bose–Einstein condensation
,”
Proc. R. Soc. London, Ser. A
203
,
266
286
(
1950
);
J. T. M.
Walraven
and
I. F.
Silvera
, “
Density, Magnetization, Compression, and Thermal Leakage of Low-Temperature Atomic Hydrogen
,”
Phys. Rev. Lett.
44
,
168
171
(
1980
);
T.
Tommila
, “
Cooling of Spin-Polarized Hydrogen Atoms Trapped in Magnetic-Field Minima
,”
Europhys. Lett.
2
,
789
795
(
1986
).
4.
M.
van den Berg
and
J. T.
Lewis
, “
On the Free Boson Gas in a Weak External Potential
,”
Commun. Math. Phys.
81
,
475
494
(
1981
).
5.
C. E.
Campbell
,
J. G.
Dash
, and
M.
Schick
, “
Effects of Lateral Substrate Fields on Helium Monolayers
,”
Phys. Rev. A
26
,
966
968
(
1971
).
6.
V.
Bagnato
,
D.
Pritchard
, and
D.
Kleppner
, “
Bose–Einstein condensation in an external potential
,”
Phys. Rev. A
35
,
4354
4358
(
1987
);
V.
Bagnato
and
D.
Kleppner
, “
Bose–Einstein condensation in low-dimensional traps
,”
Phys. Rev. A
44
,
7439
7441
(
1991
).
7.
R.
Masut
and
W. J.
Mullin
, “
Spatial Bose–Einstein condensation
,”
Am. J. Phys.
47
,
493
497
(
1979
).
8.
I. F.
Silvera
, “
Bose–Einstein condensation
,”
Am. J. Phys.
65
,
570
574
(
1997
).
9.
M.
Ligare
, “
Numerical analysis of Bose–Einstein condensation in a three-dimensional harmonic potential
,”
Am. J. Phys.
66
,
185
190
(
1998
).
10.
R. P. Feynman, Statistical Mechanics (Benjamin, Reading, MA, 1972).
11.
R. P.
Feynman
, “
Atomic Theory of the λ Transition in Helium
,”
Phys. Rev.
91
,
1291
1301
(
1953
).
12.
T.
Matsubara
, “
Quantum Statistical Theory of Liquid Helium
,”
Prog. Theor. Phys.
6
,
714
(
1951
).
13.
O.
Penrose
and
L.
Onsager
, “
Bose–Einstein Condensation and Liquid Helium
,”
Phys. Rev.
104
,
576
584
(
1956
).
14.
For example,
W.
McMillan
, “
Ground State of Liquid Helium
,”
Phys. Rev.
138
,
A442
A451
(
1965
);
D. M.
Ceperley
and
E. L.
Pollock
,
Phys. Rev. Lett.
56
,
351
354
(
1986
).
15.
D. M.
Ceperley
, “
Path integrals in the theory of condensed helium
,”
Rev. Mod. Phys.
67
,
279
355
(
1995
).
16.
W.
Krauth
, “
Quantum Monte Carlo Calculations for a Large Number of Bosons in a Harmonic Trap
,”
Phys. Rev. Lett.
77
,
3695
(
1996
).
17.
P.
Grüter
,
D. M.
Ceperley
, and
F.
Laloë
, “
Critical temperature of Bose–Einstein condensation of hard-sphere gases
,”
Phys. Rev. Lett.
79
,
3549
3552
(
1997
).
18.
S.
Heinrichs
and
W. J.
Mullin
, “
Quantum Monte Carlo Calculations for Bosons in a Two-Dimensional Harmonic Trap
,”
J. Low Temp. Phys.
113
,
231
236
(
1998
);
S.
Heinrichs
and
W. J.
Mullin
, erratum
J. Low Temp. Phys.
114
,
571
(
1999
).
19.
M. Holzmann, P. Grüter, and F. Laloë, “Bose–Einstein condensation in interacting gases,” Eur. J. Phys. (in press);
http://xxx.lanl.gov, cond-mat/9809356.
20.
Of course, the variable R is redundant; it would be enough simply to maintain 3 constant as N is increased. With the convenient introduction of R we assume that U0 is kept fixed in the TDL.
21.
W. J.
Mullin
, “
Bose–Einstein Condensation in a Harmonic Potential
,”
J. Low Temp. Phys.
106
,
615
641
(
1997
).
22.
K.
Damle
,
T.
Senthil
,
S. N.
Majumdar
, and
S.
Sachdev
, “
Phase transition of a Bose gas in a harmonic potential
,”
Europhys. Lett.
36
,
6
12
(
1996
).
23.
F. London, Superfluids (Dover, New York, 1964), Vol. II, p. 203.
24.
For numerical computations, Eq. (6) was transformed into a one-dimensional sum over p=mx+my+ms. We found that value of α that made the sum numerically equal to the appropriate value of N, in this case 1000. The value α leads to n0 via Eq. (20).
25.
W.
Ketterle
and
N. J.
van Druten
, “
Bose–Einstein condensation of a finite number of particles trapped in one or three dimensions
,”
Phys. Rev. A
54
,
656
660
(
1996
);
K.
Kirsten
and
D. J.
Toms
, “
Bose–Einstein condensation of atomic gases in a general harmonic-oscillator confining potential trap
,”
Phys. Rev. A
54
,
4188
4203
(
1996
);
R. K.
Pathria
, “
Bose–Einstein condensation of a finite number of particles confined to harmonic traps
,”
Phys. Rev. A
58
,
1490
1495
(
1998
).
26.
V. Elser, “Topics in Statistical Mechanics,” Ph.D. thesis, Berkeley, 1984.
27.
F.
Brosens
,
J. T.
Devreese
, and
L. F.
Lemmens
, “
Thermodynamics of coupled identical oscillators within the path-integral formalism
,”
Phys. Rev. E
55
,
227
(
1997
);
F.
Brosens
,
J. T.
Devreese
, and
L. F.
Lemmens
, “
Density and pair correlation function of confined identical particles: The Bose–Einstein case
,”
Phys. Rev. E
55
,
6795
(
1997
).
28.
D. I.
Ford
, “
A Note on the Partition Function for Systems of Independent Particles
,”
Am. J. Phys.
39
,
215
(
1971
).
29.
The size of possible permutation loops extends to N in the grand canonical evaluation used here. However, in a true canonical ensemble-evaluation of pl the largest loop is the size of the condensate (Ref. 16).
30.
M.
Holzmann
,
W.
Krauth
, and
M.
Naraschewski
, “
Precision Monte Carlo test of the Hartree–Fock approximation for a trapped gas
,”
Phys. Rev. A
59
,
2956
(
1999
).
31.
For example,
J. C.
Wheeler
,
S. J.
Kennedy
, and
P.
Pfeuty
, “
Equilibrium Polymerization as a Critical Phenomenon
,”
Phys. Rev. Lett.
45
,
1748
1752
(
1980
).
32.
F. W. Weigel, Introduction to Path-Integral Methods in Physics and Polymer Science (World Scientific, Philadelphia, 1986).
33.
C. Berge, Principles of Combinatorics (Academic, New York, 1971).  
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.