A simple derivation based on the generalized Hellmann–Feynman theorem is given for the three-term recursion relation for in the energy eigenstates of a hydrogenic atom and the harmonic oscillator in one, two, and three dimensions.
REFERENCES
1.
H.
Beker
, “A simple calculation of for the hydrogen atom and the three dimensional harmonic oscillator
,” Am. J. Phys.
65
, 1118
–1119
(1997
).2.
S.
Pasternach
, “On the mean value of for Keplerian systems
,” Proc. Natl. Acad. Sci. USA
23
, 91
–94
(1937
);3.
A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1961), Vol. 1, p. 431.
4.
R. L. Liboff, Introduction to Quantum Mechanics (Addison–Wesley, Longman, Reading, MA, 1998), 3rd ed., pp. 475–476.
5.
J. D.
Hey
, “Further properties of hydrogenic wave functions
,” Am. J. Phys.
61
, 741
–749
(1993
).6.
J. H.
Epstein
and S. T.
Epstein
, “Some applications of hypervirial theorems to the calculation of average values
,” Am. J. Phys.
30
, 266
–268
(1962
).7.
P. D.
Robinson
, “Hypervirial theorems and perturbation theory in quantum mechanics
,” Proc. R. Soc. London
283
, 229
–237
(1965
).8.
P. D.
Robinson
, “Determination of hypervirial operators in perturbation theory
,” J. Chem. Phys.
47
, 2319
–2322
(1967
).9.
A. O.
Barut
, H.
Beker
, and T.
Rador
, “Algebraic perturbation theory for singular potentials
,” Phys. Lett. A
194
, 1
–6
(1994
).10.
A. O.
Barut
, H.
Beker
, and T.
Rador
, “SU (1,1) perturbation of the simple harmonic oscillator
,” Phys. Lett. A
205
, 1
–2
(1995
).11.
S.
Balasubramanian
, “Note on Feynman’s theorem
,” Am. J. Phys.
52
, 1143
–1144
(1984
).12.
S.
Balasubramanian
, “A note on the generalized Hellmann–Feynman theorem
,” Am. J. Phys.
58
, 1204
–1205
(1990
).13.
J. L. Powell and B. Crasemann, Quantum Mechanics (Addison–Wesley, B. I. Publications, Bombay, 1963), pp. 127–134, 234, and 207–215.
This content is only available via PDF.
© 2000 American Association of Physics Teachers.
2000
American Association of Physics Teachers
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.