We develop a series solution for the bound-state energy levels of the quantum-mechanical one-dimensional finite square-well potential. We show that this general solution is useful for local approximations of the energy spectrum (which target a particular energy range of the potential well for high accuracy), for global approximations of the energy spectrum (which provide analytic expressions of reasonable accuracy for the entire range of bound states), and for numerical methods. This solution also provides an analytic description of dynamical phenomena; with it, we compute the time scales of classical motion, revivals, and super-revivals for wave-packet states excited in the well.

1.
C. D.
Cantrell
, “
Bound-state energies of a particle in a finite square well: An improved graphical solution
,”
Am. J. Phys.
39
,
107
110
(
1971
).
2.
S. Gasiorowicz, Quantum Physics (Wiley, New York, 1996), 2nd ed., pp. 78–83.
3.
D. J. Griffiths, Introduction to Quantum Mechanics (Prentice–Hall, Englewood Cliffs, NJ, 1995), pp. 60–66.
4.
R. L. Liboff, Introductory Quantum Mechanics (Addison–Wesley, Reading, MA, 1992), 2nd ed., pp. 275–284.
5.
H. C. Ohanian, Principles of Quantum Mechanics (Prentice–Hall, Englewood Cliffs, NJ, 1990), pp. 78–84.
6.
For an introductory discussion of wave-packet dynamics in the hydrogen atom and its connections to classical mechanics, see
M.
Nauenberg
,
C. R.
Stroud
, Jr.
, and
J.
Yeazell
, “
The classical limit of an atom
,”
Sci. Am.
270
,
24
29
(June
1994
).
7.
J.
Parker
and
C. R.
Stroud
, Jr.
, “
Coherence and decay of Rydberg wave packets
,”
Phys. Rev. Lett.
56
,
716
(
1986
).
8.
M.
Nauenberg
, “
Autocorrelation function and quantum recurrence of wavepackets
,”
J. Phys. B
23
,
L385
L390
(
1990
).
9.
R.
Bluhm
,
V. A.
Kostelecký
, and
J. A.
Porter
, “
The evolution and revival structure of localized quantum wave packets
,”
Am. J. Phys.
64
,
944
953
(
1996
).
10.
Z. D.
Gaeta
and
C. R.
Stroud
, Jr.
, “
Classical and quantum-mechanical dynamics of a quasi-classical state of the hydrogen atom
,”
Phys. Rev. A
42
,
6308
6313
(
1990
).
11.
D. L.
Aronstein
and
C. R.
Stroud
, Jr.
, “
Fractional wave-function revivals in the infinite square well
,”
Phys. Rev. A
55
,
4526
4537
(
1997
).
12.
B. I.
Barker
,
G. H.
Rayborn
,
J. W.
Ioup
, and
G. E.
Ioup
, “
Approximating the finite square well with an infinite well: Energies and eigenfunctions
,”
Am. J. Phys.
59
,
1038
1042
(
1991
).
13.
L. I. Schiff, Quantum Mechanics (McGraw–Hill, New York, 1968), 3rd ed., pp. 37–44.
14.
P. H.
Pitkanen
, “
Rectangular potential well problem in quantum mechanics
,”
Am. J. Phys.
23
,
111
113
(
1955
).
15.
P. G.
Guest
, “
Graphical solutions for the square well
,”
Am. J. Phys.
40
,
1175
1176
(
1972
).
16.
R. D.
Murphy
and
J. M.
Phillips
, “
Bound-state eigenvalues of the square-well potential
,”
Am. J. Phys.
44
,
574
576
(
1976
).
17.
W. C.
Elmore
, “
Eigenvalues of the square-well problem
,”
Am. J. Phys.
39
,
976
977
(
1971
).
18.
E. J.
Burge
, “
Improved simple graphical solution for the eigenvalues of the finite square well potential
,”
Eur. J. Phys.
6
,
154
164
(
1985
).
19.
B. C.
Reed
, “
A single equation for finite rectangular well energy eigenvalues
,”
Am. J. Phys.
58
,
503
504
(
1990
).
We note that Pitkanen (Ref. 14) mentioned the possibility of such a unified equation, without developing it analytically, some 35 years earlier.
20.
D. W. L.
Sprung
,
H.
Wu
, and
J.
Martorell
, “
A new look at the square well potential
,”
Eur. J. Phys.
13
,
21
25
(
1992
).
21.
P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw–Hill, New York, 1953), Vol. 1, pp. 411–413.
22.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972), p. 16.
23.
D. W. L.
Sprung
,
H.
Wu
, and
J.
Martorell
, “
Poles, bound states, and resonances illustrated by the square well potential
,”
Am. J. Phys.
64
,
136
144
(
1996
).
24.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing (Cambridge U.P., Cambridge, 1992), 2nd ed., Sec. 9.4.
Note also that numerical iteration methods for finding energy levels are discussed in detail by Murphy and Phillips (Ref. 16).
25.
C.
Leichtle
,
I. Sh.
Averbukh
, and
W. P.
Schleich
, “
Multilevel quantum beats: An analytical approach
,”
Phys. Rev. A
54
,
5299
5312
(
1996
).
26.
A.
Venugopalan
and
G. S.
Agarwal
, “
Superrevivals in the quantum dynamics of a particle confined in a finite square-well potential
,”
Phys. Rev. A
59
,
1413
1422
(
1999
).
27.
D. L.
Aronstein
and
C. R.
Stroud, Jr.
, “
Analytical investigation of revival phenomena in the finite square-well potential
,”
Phys. Rev. A
62
,
022102
(
2000
).
28.
The first wave-packet revival occurs in the vicinity of time T2/2, but the exact moment when the re-formed packet passes through its original location is a (known) function of both T1 and T2. Similarly, the details of super-revival phenomena depend on T1,T2, and T3. This is discussed on
O.
Knospe
and
R.
Schmidt
, “
Revivals of wave packets: General theory and applications to Rydberg clusters
,”
Phys. Rev. A
54
,
1154
1160
(
1996
).
29.
R.
Bluhm
and
V. A.
Kostelecký
, “
Long-term evolution and revival structure of Rydberg wave packets
,”
Phys. Lett. A
200
,
308
313
(
1995
).
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.