We consider a variety of nonlinear systems, described by linear differential equations, subjected to small nonlinear perturbations. Approximate solutions are sought in terms of expansions in a small parameter. The method of normal forms is developed and shown to be capable of constructing a series expansion in which the individual terms in the series correctly incorporate the essential aspects of the full solution. After an extensive introduction, we discuss a series of examples. Most of our attention is given to autonomous systems with imaginary eigenvalues for the unperturbed problem. But, we also analyze a system of equations with negative eigenvalues; one zero and one negative eigenvalue; two nonautonomous problems and phase locking in a coupled-oscillator system. We conclude with a brief section on an integral formulation of the method.

1.
R. H. Rand and D. Armbruster, Perturbation Methods, Bifurcation Theory and Computer Algebra (Springer-Verlag, New York, 1987).
2.
R. H. Rand, Topics in Nonlinear Dynamics with Computer Algebra (Gordon and Breach, Amsterdam, 1994).
3.
H. Poincaré, New Methods of Celestial Mechanics, originally published as les Methodes Nouvelles de la Mechanique Celeste (Gauthier-Villars, Paris, 1892, AIP Press, New York, 1993).
4.
V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations (Springer-Verlag, New York, 1988), 2nd ed.
5.
J. Guckenheimer and P. J. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer-Verlag, New York, 1988).
6.
S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos (Springer-Verlag, New York, 1990).
7.
A. Nayfeh, Method of Normal Forms (Wiley, New York, 1993).
8.
P. B. Kahn and Y. Zarmi, Nonlinear Dynamics (Wiley, New York, 1998).
9.
V. M. Starshinskii, Applied Methods in the Theory of Nonlinear Oscillations (Mir, Moscow, 1977).
10.
G. I.
Hori
, “
Theory of General Perturbations with Unspecified Canonical Variables
,”
Publ. Astron. Soc. Jpn.
18
,
287
296
(
1966
).
11.
A.
Deprit
, “
Canonical Transformations Depending on a Parameter
,”
Celest. Mech.
1
,
12
13
(
1969
).
12.
A. J.
Dragt
and
J. M.
Finn
, “
Lie Series and Invariant Functions for Analytic Symplectic Maps
,”
J. Math. Phys.
17
,
2215
2227
(
1976
).
13.
A. J.
Dragt
and
É.
Forest
, “
Computation of Nonlinear Behavior of Hamiltonian Systems using Lie Algebraic Methods
,”
J. Math. Phys.
24
,
2734
2744
(
1983
).
14.
É.
Forest
and
D.
Murray
, “
Freedom in Minimal Normal Forms
,”
Physica D
74
,
181
196
(
1994
).
15.
É. Forest, Beam Dynamics: A New Attitude and Framework (Harwood, Amsterdam, 1998).
16.
P. Manneville, Dissipative Structures and Weak Turbulence (Academic, New York, 1990).
17.
A. J.
Dragt
, “
Lie-Algebraic Theory of Geometrical Optics and Optical Aberrations
,”
J. Opt. Soc. Am.
72
,
372
379
(
1982
).
18.
A. D. Bruno, Local Methods in Nonlinear Differential Equations (Springer-Verlag, New York, 1989).
19.
J. Carr, Applications of Centre Manifold Theory (Springer-Verlag, New York, 1981).
20.
P. B. Kahn, Mathematical Methods for Scientists and Engineers: Linear and Nonlinear Systems (Wiley, New York, 1990).
21.
M.
Kummer
, “
How to Avoid Secular Terms in Classical and Quantum Mechanics
,”
Nuovo Cimento Soc. Ital. Fis., B
1
,
123
148
(
1971
).
22.
J. C.
Liu
, “
The Uniqueness of Normal Forms via Lie Transformations and its Application to Hamiltonian Systems
,”
Celest. Mech.
36
,
89
104
(
1985
).
23.
A.
Baider
and
R. C.
Churchill
, “
Uniqueness and Non-Uniqueness of Normal Form Expansions for Vector Fields
,”
Proc. R. Soc. Edinburgh, Sect. A: Math.
108
,
27
33
(
1988
).
24.
P. B.
Kahn
and
Y.
Zarmi
, “
Minimal Normal Forms in Harmonic Oscillations with Small Nonlinear Perturbations
,”
Physica D
54
,
65
74
(
1991
).
25.
P. B.
Kahn
,
D.
Murray
, and
Y.
Zarmi
, “
Freedom in Small Parameter Expansion for Nonlinear Perturbations
,”
Proc. R. Soc. London, Ser. A
443
,
83
94
(
1993
).
26.
H. T. Davis, Introduction to Nonlinear Differential and Integral Equations (Dover, New York, 1962).
27.
P. B.
Kahn
and
Y.
Zarmi
, “
Reduction of Secular Error in Approximations to Harmonic Oscillator Systems with Nonlinear Perturbations
,”
Physica D
118
,
221
249
(
1998
).
28.
B.
Van der Pol
, “
On Oscillation Hysteresis in a Simple Triode Generator
,”
Philos. Mag.
43
,
700
719
(
1922
).
29.
Lord
Rayleigh
(
J. W.
Strutt
), “
On Maintained Vibrations
,”
Philos. Mag.
XV
,
229
235
(
1883
).
30.
Yu. A.
Mitropolskii
and
A. M.
Samoilenko
, “
Quasi-periodic Oscillations in Linear Systems
,”
Ukr. Mat. J.
24
(
2
),
179
193
(
1972
).
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.