We describe an undergraduate laboratory experiment on conductance steps observed to occur near integer multiples of 2e2/h as nanocontacts form and break between gold wires in loose contact. This experimental arrangement was first described by Costa-Krämer et al. [Surf. Sci. 342, L1144 (1995)]. A simple op-amp circuit in conjunction with an inexpensive storage oscilloscope suffice to observe the steps. The experiment may be extended by interfacing to a computer, which accumulates a histogram of conductance values as the wires are brought into and out of contact many times. The histogram shows peaks near integer multiples of 2e2/h. We emphasize the pedagogical issues involved in bringing an experiment from forefront condensed-matter physics research into the undergraduate laboratory.

1.
H. I.
Smith
and
H. G.
Craighead
, “
Nanofabrication
,”
Phys. Today
43
(
2
),
24
30
(
1990
).
2.
For a basic overview see
D.
Goldhaber-Gordon
,
M. S.
Montemerlo
,
J. C.
Love
,
G. J.
Opiteck
, and
J. C.
Ellenbogen
, “
Overview of Nanoelectronic Devices
,”
Proc. IEEE
85
(
4
),
521
540
(
1997
).
3.
For in-depth discussion of the physics, not necessarily at the undergraduate level, see Y. Imry, Introduction to Mesoscopic Physics (Oxford U.P., New York, 1997).
4.
G. J.
Dolan
, “
Offset masks for lift-off photoprocessing
,”
Appl. Phys. Lett.
31
(
5
),
337
339
(
1977
);
T. A.
Fulton
and
G. J.
Dolan
, “
Observation of Single-Electron Charging Effects in Small Tunnel Junctions
,”
Phys. Rev. Lett.
59
(
1
),
109
112
(
1987
).
5.
B. J.
van Wees
,
H.
van Houten
,
C. W. J.
Beenakker
,
J. G.
Williamson
,
L. P.
Kouwenhoven
,
D.
van der Marel
, and
C. T.
Foxon
, “
Quantized Conductance of Point Contacts in a Two-Dimensional Electron Gas
,”
Phys. Rev. Lett.
60
(
9
),
848
850
(
1988
);
D. A.
Wharam
,
T. J.
Thorton
,
R.
Newbury
,
M.
Pepper
,
H.
Ahmed
,
J. E. F.
Frost
,
D. G.
Hasko
,
D. C.
Peacock
,
D. A.
Ritchie
, and
G. A. C.
Jones
, “
One-dimensional transport and the quantisation of the ballistic resistance
,”
J. Phys. C
21
,
L209
L214
(
1988
);
D. A.
Wharam
,
T. J.
Thorton
,
R.
Newbury
,
M.
Pepper
,
H.
Ahmed
,
J. E. F.
Frost
,
D. G.
Hasko
,
D. C.
Peacock
,
D. A.
Ritchie
, and
G. A. C.
Jones
, “
Ballistic Electron Transport Through a Narrow Channel is Quantized
,”
Phys. Today
44
(
11
),
21
(
1988
).
6.
G.
Rubio
,
N.
Araı̈t
, and
S.
Viera
, “
Atomic-Sized Metallic Contacts: Mechanical Properties and Electronic Transport
,”
Phys. Rev. Lett.
76
(
13
),
2302
2305
(
1996
).
7.
J. L.
Costa-Krämer
,
N.
Garcı́a
,
P.
Garcı́a-Mochales
, and
P. A.
Serena
, “
Nanonwire formation in macroscopic metallic contacts: Quantum mechanical conductance tapping a table top
,”
Surf. Sci.
342
,
L1144
L1149
(
1995
).
8.
LABVIEW is a trademark of National Instruments, Austin, TX.
9.
The LABVIEW program developed for these experiments may be obtained by contacting the second author at [email protected].
10.
See, for example, D. K. Ferry, Quantum Mechanics (IOP Bristol, 1995).
11.
H.
van Houten
and
C.
Beenakker
, “
Quantum Point Contacts
,”
Phys. Today
49
(
7
),
22
27
(
1996
).
12.
C. W. J.
Beenakker
and
H.
van Houten
, “
Quantum Transport in Semiconductor Nanostructures
,”
Solid State Phys.
44
,
1
228
(
1991
).
13.
J. M.
Krans
,
J. M.
van Ruitenbeek
,
V. V.
Fisun
,
I. K.
Yanson
, and
L. J.
de Jongh
, “
The signature of conductance quantization in metallic point contacts
,”
Nature (London)
375
,
767
769
(
1995
).
14.
U.
Landman
,
W. D.
Luedtke
,
B. E.
Salisbury
, and
R. L.
Whetten
, “
Reversible Manipulations of Room Temperature Mechanical and Quantum Transport Properties in Nanowire Junctions
,”
Phys. Rev. Lett.
77
(
7
),
1362
1365
(
1996
).
15.
P.
Garcı́a-Mochales
and
P. A.
Serena
, “
Disorder as Origin of Residual Resistance in Nanowires
,”
Phys. Rev. Lett.
79
(
12
),
2316
2319
(
1997
).
16.
A. I.
Yanson
and
J. M.
van Ruitenbeek
, “
Do Histograms Constitute a Proof for Conductance Quantization?
Phys. Rev. Lett.
79
(
11
),
2157
2157
(
1997
).
17.
J. L.
Costa-Krämer
,
N.
Garcı́a
, and
H.
Olin
, “
Conductance Quantization in Bismuth Nanowires at 4 K
,”
Phys. Rev. Lett.
78
(
26
),
4990
4993
(
1997
).
18.
We used a Tektronix model TDS210 oscilloscope with model TDS2CM communications extension module.
19.
The output resistance of the source is effectively in series with the nanocontact. On the tenth conductance step, the nanocontact resistance is 1/(10×2e2/h)≈1.3 kΩ, so the shift due to a 50 Ω output resistance is 4%. The shift is correspondingly less for the lower conductance steps.
20.
K.
Hansen
,
E.
Lægsgaard
,
I.
Stensgaard
, and
F.
Besenbacher
, “
Quantized conductance in relays
,”
Phys. Rev. B
56
(
4
),
2208
2220
(
1997
).
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.