The usual suggestion for the longitudinally propagating momentum carried by a transverse wave on a string is shown to lead to paradoxes. Numerical simulations provide clues for resolving these paradoxes. The usual formula for wave momentum should be changed by a factor of 2 and the involvement of the cogenerated longitudinal waves is shown to be of crucial importance.

1.
R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison–Wesley, Reading, MA, 1964), Vol. II, Chap. 27.
2.
J. R. Pierce, Almost All About Waves (MIT, Cambridge, MA, 1974).
3.
D. W.
Juenker
, “
Energy and Momentum Transport in String Waves
,”
Am. J. Phys.
44
,
94
99
(
1976
).
4.
Lord
Rayleigh
, “
On the Momentum and Pressure of Gaseous Vibrations, and on the Connexion with the Virial Theorem
,”
Philos. Mag.
10
,
364
374
(
1905
).
5.
C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1986), 6th ed.
6.
I. H.
Gilbert
and
B. R.
Mollow
, “
Momentum of Longitudinal Elastic Vibrations
,”
Am. J. Phys.
36
,
822
825
(
1968
).
7.
V. L.
Gurevich
and
A.
Thellung
, “
Quasimomentum in the theory of elasticity and its conservation
,”
Phys. Rev. B
42
,
7345
7349
(
1990
).
8.
V. L.
Gurevich
and
A.
Thellung
, “
On the quasimomentum of light and matter and its conservation
,”
Physica A
188
,
654
674
(
1992
).
9.
D. F.
Nelson
, “
Momentum, pseudomomentum, and wave momentum: Toward resolving the Minkowski–Abraham controversy
,”
Phys. Rev. A
44
,
3985
3996
(
1991
).
10.
W. C. Elmore and M. A. Heald, Physics of Waves (McGraw–Hill, New York, 1969).
11.
C. A. Coulson and A. Jeffrey, Waves: A Mathematical Approach to the Common Types of Wave Motion (Longman, London, 1977).
12.
A. Hirose and K. E. Lonngren, Introduction to Wave Phenomena (Wiley, New York, 1985).
13.
R.
Benumof
, “
Momentum propagation by travelling waves on a string
,”
Am. J. Phys.
50
,
20
25
(
1982
).
14.
P.
Stehle
, “
The momentum of a transverse wave
,”
Am. J. Phys.
55
,
613
615
(
1987
).
15.
L. J. F.
Broer
, “
On the Dynamics of Strings
,”
J. Eng. Math.
4
,
195
202
(
1970
).
16.
G. R. Baldcock and T. Bridgeman, Mathematical Theory of Wave Motion (Ellis–Harwood, Chichester, 1981).
17.
S. Trillo and S. Wabnitz, “Nonlinear Dynamics of Parametric Wave-Mixing Interactions in Optics: Instabilities and Chaos,” in Guided Wave Nonlinear Optics, edited by D. B. Ostrowsky and R. Reinisch (Kluwer, Dordrecht, The Netherlands, 1992), pp. 489–534.
18.
C.
Pask
,
D. R.
Rowland
, and
W.
Samir
, “
A Constant of Motion for Modal Interactions in Nonlinear Dielectric Waveguides
,”
J. Opt. Soc. Am. B
15
,
1871
1879
(
1998
).
19.
F. N. H.
Robinson
, “
Electromagnetic Stress and Momentum in Matter
,”
Phys. Rep.
16
,
313
354
(
1975
).
20.
I.
Brevik
, “
Experiments in Phenomenological Electrodynamics and the Electromagnetic Energy-Momentum Tensor
,”
Phys. Rep.
52
,
133
201
(
1979
).
21.
W.
Shockley
, “
A ‘Try Simplest Cases’ Resolution of the Abraham–Minkowski Controversy on Electromagnetic Momentum in Matter
,”
Proc. Natl. Acad. Sci. USA
60
,
807
813
(
1968
).
22.
H. Goldstein, Classical Mechanics (Addison–Wesley, Reading, MA, 1980), 2nd ed.
23.
S. B. Palmer and M. S. Rogalski, Advanced University Physics (Gordon and Breach, New York, 1996).
24.
H. C. Corben and P. Stehle, Classical Mechanics (Wiley, New York, 1960).
25.
K. U. Ingard, Fundamentals of Waves and Oscillations (Cambridge U.P., Cambridge, 1988).
26.
S. Wolfram, The Mathematica Book (Cambridge U.P., Cambridge, 1996), 3rd ed.
27.
The a/l=0 limit is approximated by the Slinky spring, a popular waves demonstration “toy,” which has essentially a zero relaxed length and so for which cT≃cL. At the other extreme, a piano wire tuned to 440 Hz must be stretched by about 3% (Ref. 13).
28.
N.
Giordano
and
A. J.
Korty
, “
Motion of a piano string: Longitudinal vibrations and the role of the bridge
,”
J. Acoust. Soc. Am.
100
,
3899
3908
(
1996
).
29.
N.
Giordano
, “
The Physics of Vibrating Strings
,”
Comput. Phys.
12
,
138
145
(
1998
).
30.
That the wave behaves like a particle with total momentum G=∫waveρ0ξ̇dx=−(1/2)∫waveρ0ηη̇dx, can be seen by simulating the reflection of a wave off a very large mass located at the right-hand end of the chain and attached to a fixed wall by a standard spring under the standard tension τ0. This mass picks up momentum 2G as expected from the physics of particles. The mass needs to be very large so that in picking up this momentum, it hardly moves and so doesn’t stretch the springs attached to it significantly.
31.
L. A. Segel, Mathematics Applied to Continuum Mechanics (Macmillan, New York, 1977).
32.
J. B.
Keller
, “
Large Amplitude Motion of a String
,”
Am. J. Phys.
27
,
584
586
(
1959
).
33.
J. C.
Luke
, “
The motion of a stretched string with zero relaxed length in a gravitational field
,”
Am. J. Phys.
60
,
529
532
(
1992
).
34.
E. A.
Jagla
and
D. A. R.
Dalvit
, “
Null-length springs: Some curious properties
,”
Am. J. Phys.
59
,
434
436
(
1991
).
35.
G. B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974).
36.
P. M. Morse and K. U. Ingard, Theoretical Acoustics (McGraw–Hill, New York, 1968).
This content is only available via PDF.
AAPT members receive access to the American Journal of Physics and The Physics Teacher as a member benefit. To learn more about this member benefit and becoming an AAPT member, visit the Joining AAPT page.